vaatsav06 commited on
Commit
8da3847
·
verified ·
1 Parent(s): d21c41f

Model save

Browse files
Files changed (1) hide show
  1. README.md +42 -40
README.md CHANGED
@@ -1,59 +1,61 @@
1
  ---
 
 
2
  base_model: unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit
3
- library_name: transformers
4
- model_name: llama_3_2-givcxr-vqa-new
5
  tags:
6
- - generated_from_trainer
 
 
 
7
  - trl
8
  - unsloth
9
- - sft
10
- licence: license
 
 
11
  ---
12
 
13
- # Model Card for llama_3_2-givcxr-vqa-new
14
-
15
- This model is a fine-tuned version of [unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit](https://huggingface.co/unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit).
16
- It has been trained using [TRL](https://github.com/huggingface/trl).
17
-
18
- ## Quick start
19
 
20
- ```python
21
- from transformers import pipeline
22
 
23
- question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
24
- generator = pipeline("text-generation", model="vaatsav06/llama_3_2-givcxr-vqa-new", device="cuda")
25
- output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
26
- print(output["generated_text"])
27
- ```
28
 
29
- ## Training procedure
30
 
31
- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/bavanasreevaatsav1/llama_3_2-givcxr-finetuning-new/runs/3b5t8zc2)
32
 
 
33
 
34
- This model was trained with SFT.
35
 
36
- ### Framework versions
37
 
38
- - TRL: 0.19.1
39
- - Transformers: 4.53.2
40
- - Pytorch: 2.7.1
41
- - Datasets: 3.6.0
42
- - Tokenizers: 0.21.2
43
 
44
- ## Citations
45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
 
47
 
48
- Cite TRL as:
49
-
50
- ```bibtex
51
- @misc{vonwerra2022trl,
52
- title = {{TRL: Transformer Reinforcement Learning}},
53
- author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
54
- year = 2020,
55
- journal = {GitHub repository},
56
- publisher = {GitHub},
57
- howpublished = {\url{https://github.com/huggingface/trl}}
58
- }
59
- ```
 
1
  ---
2
+ library_name: peft
3
+ license: llama3.2
4
  base_model: unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit
 
 
5
  tags:
6
+ - base_model:adapter:unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit
7
+ - lora
8
+ - sft
9
+ - transformers
10
  - trl
11
  - unsloth
12
+ pipeline_tag: text-generation
13
+ model-index:
14
+ - name: llama_3_2-givcxr-vqa-new
15
+ results: []
16
  ---
17
 
18
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
19
+ should probably proofread and complete it, then remove this comment. -->
 
 
 
 
20
 
21
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/bavanasreevaatsav1/llama_3_2-givcxr-finetuning-new/runs/3b5t8zc2)
22
+ # llama_3_2-givcxr-vqa-new
23
 
24
+ This model is a fine-tuned version of [unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit](https://huggingface.co/unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit) on an unknown dataset.
 
 
 
 
25
 
26
+ ## Model description
27
 
28
+ More information needed
29
 
30
+ ## Intended uses & limitations
31
 
32
+ More information needed
33
 
34
+ ## Training and evaluation data
35
 
36
+ More information needed
 
 
 
 
37
 
38
+ ## Training procedure
39
 
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 0.0001
44
+ - train_batch_size: 24
45
+ - eval_batch_size: 4
46
+ - seed: 3407
47
+ - gradient_accumulation_steps: 2
48
+ - total_train_batch_size: 48
49
+ - optimizer: Use adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
50
+ - lr_scheduler_type: constant
51
+ - lr_scheduler_warmup_ratio: 0.1
52
+ - lr_scheduler_warmup_steps: 5
53
+ - num_epochs: 1
54
 
55
+ ### Framework versions
56
 
57
+ - PEFT 0.16.0
58
+ - Transformers 4.53.2
59
+ - Pytorch 2.7.1+cu126
60
+ - Datasets 3.6.0
61
+ - Tokenizers 0.21.2