--- library_name: transformers language: - tr license: mit base_model: microsoft/speecht5_tts tags: - text-to-speech - generated_from_trainer datasets: - erenfazlioglu/turkishvoicedataset model-index: - name: SpeechT5 TTS Turkish results: [] --- # SpeechT5 TTS Turkish This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the turkishvoicedataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3079 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 6000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 0.4436 | 1.8484 | 1000 | 0.3752 | | 0.3822 | 3.6969 | 2000 | 0.3403 | | 0.3729 | 5.5453 | 3000 | 0.3233 | | 0.3451 | 7.3937 | 4000 | 0.3153 | | 0.3315 | 9.2421 | 5000 | 0.3099 | | 0.3492 | 11.0906 | 6000 | 0.3079 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1 ### Usage installs ```bash !pip install datasets soundfile speechbrain ``` inference ```python from transformers import pipeline from datasets import load_dataset import soundfile as sf import torch from IPython.display import Audio synthesiser = pipeline("text-to-speech", "umarigan/speecht5_tts_tr_v1.0") embeddings_dataset = load_dataset("umarigan/turkish_voice_dataset_embedded", split="train") speaker_embedding = torch.tensor(embeddings_dataset[736]["speaker_embeddings"]).unsqueeze(0) # Synthesize speech using the embedding speech = synthesiser("Bir berber bir berbere gel beraber bir berber kuralım demiş", forward_params={"speaker_embeddings": speaker_embedding}) # Save the generated audio to a file sf.write("speech.wav", speech["audio"], samplerate=speech["sampling_rate"]) # Play the audio in the notebook Audio("speech.wav") ```