File size: 2,687 Bytes
efa307d 183967e 126bbce 183967e 126bbce 183967e 126bbce 183967e 126bbce 183967e 126bbce 183967e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
---
library_name: transformers
language:
- tr
license: mit
base_model: microsoft/speecht5_tts
tags:
- text-to-speech
- generated_from_trainer
datasets:
- erenfazlioglu/turkishvoicedataset
model-index:
- name: SpeechT5 TTS Turkish
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SpeechT5 TTS Turkish
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the turkishvoicedataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3079
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 6000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 0.4436 | 1.8484 | 1000 | 0.3752 |
| 0.3822 | 3.6969 | 2000 | 0.3403 |
| 0.3729 | 5.5453 | 3000 | 0.3233 |
| 0.3451 | 7.3937 | 4000 | 0.3153 |
| 0.3315 | 9.2421 | 5000 | 0.3099 |
| 0.3492 | 11.0906 | 6000 | 0.3079 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1
### Usage
installs
```bash
!pip install datasets soundfile speechbrain
```
inference
```python
from transformers import pipeline
from datasets import load_dataset
import soundfile as sf
import torch
from IPython.display import Audio
synthesiser = pipeline("text-to-speech", "umarigan/speecht5_tts_tr_v1.0")
embeddings_dataset = load_dataset("umarigan/turkish_voice_dataset_embedded", split="train")
speaker_embedding = torch.tensor(embeddings_dataset[736]["speaker_embeddings"]).unsqueeze(0)
# Synthesize speech using the embedding
speech = synthesiser("Bir berber bir berbere gel beraber bir berber kuralım demiş", forward_params={"speaker_embeddings": speaker_embedding})
# Save the generated audio to a file
sf.write("speech.wav", speech["audio"], samplerate=speech["sampling_rate"])
# Play the audio in the notebook
Audio("speech.wav")
```
|