--- library_name: transformers license: apache-2.0 base_model: google/vit-large-patch16-384 tags: - image-classification - vision - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: fashion-images-pack-types-vit-large-patch16-384-v1 results: - task: name: Image Classification type: image-classification dataset: name: touchtech/fashion-images-pack-types type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.989983305509182 --- # fashion-images-pack-types-vit-large-patch16-384-v1 This model is a fine-tuned version of [google/vit-large-patch16-384](https://huggingface.co/google/vit-large-patch16-384) on the touchtech/fashion-images-pack-types dataset. It achieves the following results on the evaluation set: - Loss: 0.0446 - Accuracy: 0.9900 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0823 | 1.0 | 1697 | 0.0661 | 0.9837 | | 0.0197 | 2.0 | 3394 | 0.0900 | 0.9812 | | 0.015 | 3.0 | 5091 | 0.0446 | 0.9900 | | 0.0017 | 4.0 | 6788 | 0.0518 | 0.9912 | | 0.0 | 5.0 | 8485 | 0.0485 | 0.9917 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0