Tigran Tokmajyan commited on
Commit
2e668a6
·
1 Parent(s): 093705f

Various changes

Browse files
Files changed (1) hide show
  1. handler.py +11 -2
handler.py CHANGED
@@ -11,11 +11,14 @@ formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
11
  handler.setFormatter(formatter)
12
  logger.addHandler(handler)
13
 
 
14
  # https://www.naveedafzal.com/posts/scraping-websites-by-asking-questions-with-markuplm/
15
  class EndpointHandler:
16
  def __init__(self, path=""):
17
  # Load model, tokenizer, and feature extractor
18
- logger.debug("Loading model from: " + path)
 
 
19
  self.processor = MarkupLMProcessor.from_pretrained("microsoft/markuplm-large-finetuned-websrc")
20
  self.model = MarkupLMForQuestionAnswering.from_pretrained("microsoft/markuplm-large-finetuned-websrc")
21
 
@@ -47,6 +50,12 @@ class EndpointHandler:
47
  predict_answer_tokens = encoding.input_ids[0, answer_start_index : answer_end_index + 1]
48
  answer = self.processor.decode(predict_answer_tokens, skip_special_tokens=True)
49
 
 
 
 
 
 
50
  print(f"Answer: {answer}")
 
51
 
52
- return {"answer": answer}
 
11
  handler.setFormatter(formatter)
12
  logger.addHandler(handler)
13
 
14
+ # This is used https://github.com/NielsRogge/Transformers-Tutorials/blob/master/MarkupLM/Inference_with_MarkupLM_for_question_answering_on_web_pages.ipynb
15
  # https://www.naveedafzal.com/posts/scraping-websites-by-asking-questions-with-markuplm/
16
  class EndpointHandler:
17
  def __init__(self, path=""):
18
  # Load model, tokenizer, and feature extractor
19
+ # logger.debug("Loading model from: " + path)
20
+
21
+ # WE ARE CURRENTLY NOT USING OUR REPO'S MODEL
22
  self.processor = MarkupLMProcessor.from_pretrained("microsoft/markuplm-large-finetuned-websrc")
23
  self.model = MarkupLMForQuestionAnswering.from_pretrained("microsoft/markuplm-large-finetuned-websrc")
24
 
 
50
  predict_answer_tokens = encoding.input_ids[0, answer_start_index : answer_end_index + 1]
51
  answer = self.processor.decode(predict_answer_tokens, skip_special_tokens=True)
52
 
53
+ # Get the score
54
+ start_score = outputs.start_logits[0, answer_start_index].item()
55
+ end_score = outputs.end_logits[0, answer_end_index].item()
56
+ score = (start_score + end_score) / 2
57
+
58
  print(f"Answer: {answer}")
59
+ print(f"Score: {score}")
60
 
61
+ return {"answer": answer, "score": score}