Upload SundialForPrediction
Browse files- config.json +30 -0
- configuration_sundial.py +46 -0
- flow_loss.py +236 -0
- generation_config.json +4 -0
- model.safetensors +3 -0
- modeling_sundial.py +574 -0
- ts_generation_mixin.py +281 -0
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "checkpoints/sundial_base_gift_eval_677",
|
3 |
+
"architectures": [
|
4 |
+
"SundialForPrediction"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_sundial.SundialConfig",
|
8 |
+
"AutoModelForCausalLM": "modeling_sundial.SundialForPrediction"
|
9 |
+
},
|
10 |
+
"diffusion_batch_mul": 4,
|
11 |
+
"dropout_rate": 0.1,
|
12 |
+
"flow_loss_depth": 3,
|
13 |
+
"hidden_act": "silu",
|
14 |
+
"hidden_size": 768,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"input_token_len": 16,
|
17 |
+
"intermediate_size": 3072,
|
18 |
+
"max_position_embeddings": 10000,
|
19 |
+
"model_type": "sundial",
|
20 |
+
"num_attention_heads": 12,
|
21 |
+
"num_hidden_layers": 12,
|
22 |
+
"num_sampling_steps": 50,
|
23 |
+
"output_token_lens": [
|
24 |
+
720
|
25 |
+
],
|
26 |
+
"rope_theta": 10000,
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.40.1",
|
29 |
+
"use_cache": true
|
30 |
+
}
|
configuration_sundial.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
from transformers import PretrainedConfig
|
3 |
+
|
4 |
+
|
5 |
+
class SundialConfig(PretrainedConfig):
|
6 |
+
model_type = "sundial"
|
7 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
8 |
+
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
input_token_len: int = 16,
|
12 |
+
hidden_size: int = 768,
|
13 |
+
intermediate_size: int = 3072,
|
14 |
+
output_token_lens: List[int] = [720],
|
15 |
+
num_hidden_layers: int = 12,
|
16 |
+
num_attention_heads: int = 12,
|
17 |
+
hidden_act: str = "silu",
|
18 |
+
use_cache: bool = True,
|
19 |
+
rope_theta: int = 10000,
|
20 |
+
dropout_rate: float = 0.1,
|
21 |
+
initializer_range: float = 0.02,
|
22 |
+
max_position_embeddings: int = 10000,
|
23 |
+
flow_loss_depth: int = 3,
|
24 |
+
num_sampling_steps: int = 50,
|
25 |
+
diffusion_batch_mul: int = 4,
|
26 |
+
**kwargs,
|
27 |
+
):
|
28 |
+
self.input_token_len = input_token_len
|
29 |
+
self.hidden_size = hidden_size
|
30 |
+
self.intermediate_size = intermediate_size
|
31 |
+
self.num_hidden_layers = num_hidden_layers
|
32 |
+
self.num_attention_heads = num_attention_heads
|
33 |
+
self.hidden_act = hidden_act
|
34 |
+
self.output_token_lens = output_token_lens
|
35 |
+
self.use_cache = use_cache
|
36 |
+
self.rope_theta = rope_theta
|
37 |
+
self.dropout_rate = dropout_rate
|
38 |
+
self.initializer_range = initializer_range
|
39 |
+
self.max_position_embeddings = max_position_embeddings
|
40 |
+
self.flow_loss_depth = flow_loss_depth
|
41 |
+
self.num_sampling_steps = num_sampling_steps
|
42 |
+
self.diffusion_batch_mul = diffusion_batch_mul
|
43 |
+
|
44 |
+
super().__init__(
|
45 |
+
**kwargs,
|
46 |
+
)
|
flow_loss.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import math
|
4 |
+
|
5 |
+
|
6 |
+
class FlowLoss(nn.Module):
|
7 |
+
"""Flow Loss"""
|
8 |
+
|
9 |
+
def __init__(self, target_channels, z_channels, depth, width, num_sampling_steps):
|
10 |
+
super(FlowLoss, self).__init__()
|
11 |
+
self.in_channels = target_channels
|
12 |
+
self.net = SimpleMLPAdaLN(
|
13 |
+
in_channels=target_channels,
|
14 |
+
model_channels=width,
|
15 |
+
out_channels=target_channels,
|
16 |
+
z_channels=z_channels,
|
17 |
+
num_res_blocks=depth
|
18 |
+
)
|
19 |
+
self.num_sampling_steps = num_sampling_steps
|
20 |
+
|
21 |
+
def forward(self, target, z, mask=None, mask_y=None):
|
22 |
+
noise = torch.randn_like(target)
|
23 |
+
t = torch.rand(target.shape[0], device=target.device)
|
24 |
+
|
25 |
+
noised_target = t[:, None] * target + (1 - t[:, None]) * noise
|
26 |
+
|
27 |
+
predict_v = self.net(noised_target, t * 1000, z)
|
28 |
+
|
29 |
+
weights = 1.0 / \
|
30 |
+
torch.arange(1, self.in_channels + 1, dtype=torch.float32, device=target.device)
|
31 |
+
if mask_y is not None:
|
32 |
+
loss = (mask_y * weights * (predict_v - target) ** 2).sum(dim=-1)
|
33 |
+
else:
|
34 |
+
loss = (weights * (predict_v - target) ** 2).sum(dim=-1)
|
35 |
+
|
36 |
+
if mask is not None:
|
37 |
+
loss = (loss * mask).sum() / mask.sum()
|
38 |
+
return loss.mean()
|
39 |
+
|
40 |
+
def sample(self, z, num_samples=1):
|
41 |
+
z = z.repeat(num_samples, 1)
|
42 |
+
noise = torch.randn(z.shape[0], self.in_channels).cuda()
|
43 |
+
x = noise
|
44 |
+
dt = 1.0 / self.num_sampling_steps
|
45 |
+
for i in range(self.num_sampling_steps):
|
46 |
+
t = (torch.ones((x.shape[0])) * i /
|
47 |
+
self.num_sampling_steps).to(x.device)
|
48 |
+
pred = self.net(x, t * 1000, z)
|
49 |
+
x = x + (pred - noise) * dt
|
50 |
+
x = x.reshape(num_samples, -1, self.in_channels).transpose(0, 1)
|
51 |
+
return x
|
52 |
+
|
53 |
+
|
54 |
+
def modulate(x, shift, scale):
|
55 |
+
return x * (1 + scale) + shift
|
56 |
+
|
57 |
+
|
58 |
+
class TimestepEmbedder(nn.Module):
|
59 |
+
"""
|
60 |
+
Embeds scalar timesteps into vector representations.
|
61 |
+
"""
|
62 |
+
|
63 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
64 |
+
super().__init__()
|
65 |
+
self.mlp = nn.Sequential(
|
66 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
67 |
+
nn.SiLU(),
|
68 |
+
nn.Linear(hidden_size, hidden_size, bias=True),
|
69 |
+
)
|
70 |
+
self.frequency_embedding_size = frequency_embedding_size
|
71 |
+
|
72 |
+
@staticmethod
|
73 |
+
def timestep_embedding(t, dim, max_period=10000):
|
74 |
+
"""
|
75 |
+
Create sinusoidal timestep embeddings.
|
76 |
+
:param t: a 1-D Tensor of N indices, one per batch element.
|
77 |
+
These may be fractional.
|
78 |
+
:param dim: the dimension of the output.
|
79 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
80 |
+
:return: an (N, D) Tensor of positional embeddings.
|
81 |
+
"""
|
82 |
+
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
83 |
+
half = dim // 2
|
84 |
+
freqs = torch.exp(
|
85 |
+
-math.log(max_period) * torch.arange(start=0,
|
86 |
+
end=half, dtype=torch.float32) / half
|
87 |
+
).to(device=t.device)
|
88 |
+
args = t[:, None].float() * freqs[None]
|
89 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
90 |
+
if dim % 2:
|
91 |
+
embedding = torch.cat(
|
92 |
+
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
93 |
+
return embedding
|
94 |
+
|
95 |
+
def forward(self, t):
|
96 |
+
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
97 |
+
t_emb = self.mlp(t_freq)
|
98 |
+
return t_emb
|
99 |
+
|
100 |
+
|
101 |
+
class ResBlock(nn.Module):
|
102 |
+
"""
|
103 |
+
A residual block that can optionally change the number of channels.
|
104 |
+
:param channels: the number of input channels.
|
105 |
+
"""
|
106 |
+
|
107 |
+
def __init__(
|
108 |
+
self,
|
109 |
+
channels
|
110 |
+
):
|
111 |
+
super().__init__()
|
112 |
+
self.channels = channels
|
113 |
+
|
114 |
+
self.in_ln = nn.LayerNorm(channels, eps=1e-6)
|
115 |
+
self.mlp = nn.Sequential(
|
116 |
+
nn.Linear(channels, channels, bias=True),
|
117 |
+
nn.SiLU(),
|
118 |
+
nn.Linear(channels, channels, bias=True),
|
119 |
+
)
|
120 |
+
|
121 |
+
self.adaLN_modulation = nn.Sequential(
|
122 |
+
nn.SiLU(),
|
123 |
+
nn.Linear(channels, 3 * channels, bias=True)
|
124 |
+
)
|
125 |
+
|
126 |
+
def forward(self, x, y):
|
127 |
+
shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(
|
128 |
+
y).chunk(3, dim=-1)
|
129 |
+
h = modulate(self.in_ln(x), shift_mlp, scale_mlp)
|
130 |
+
h = self.mlp(h)
|
131 |
+
return x + gate_mlp * h
|
132 |
+
|
133 |
+
|
134 |
+
class FinalLayer(nn.Module):
|
135 |
+
"""
|
136 |
+
The final layer adopted from DiT.
|
137 |
+
"""
|
138 |
+
|
139 |
+
def __init__(self, model_channels, out_channels):
|
140 |
+
super().__init__()
|
141 |
+
self.norm_final = nn.LayerNorm(
|
142 |
+
model_channels, elementwise_affine=False, eps=1e-6)
|
143 |
+
self.linear = nn.Linear(model_channels, out_channels, bias=True)
|
144 |
+
self.adaLN_modulation = nn.Sequential(
|
145 |
+
nn.SiLU(),
|
146 |
+
nn.Linear(model_channels, 2 * model_channels, bias=True)
|
147 |
+
)
|
148 |
+
|
149 |
+
def forward(self, x, c):
|
150 |
+
shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
|
151 |
+
x = modulate(self.norm_final(x), shift, scale)
|
152 |
+
x = self.linear(x)
|
153 |
+
return x
|
154 |
+
|
155 |
+
|
156 |
+
class SimpleMLPAdaLN(nn.Module):
|
157 |
+
"""
|
158 |
+
The MLP for Diffusion Loss.
|
159 |
+
:param in_channels: channels in the input Tensor.
|
160 |
+
:param model_channels: base channel count for the model.
|
161 |
+
:param out_channels: channels in the output Tensor.
|
162 |
+
:param z_channels: channels in the condition.
|
163 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
164 |
+
"""
|
165 |
+
|
166 |
+
def __init__(
|
167 |
+
self,
|
168 |
+
in_channels,
|
169 |
+
model_channels,
|
170 |
+
out_channels,
|
171 |
+
z_channels,
|
172 |
+
num_res_blocks,
|
173 |
+
):
|
174 |
+
super().__init__()
|
175 |
+
|
176 |
+
self.in_channels = in_channels
|
177 |
+
self.model_channels = model_channels
|
178 |
+
self.out_channels = out_channels
|
179 |
+
self.num_res_blocks = num_res_blocks
|
180 |
+
|
181 |
+
self.time_embed = TimestepEmbedder(model_channels)
|
182 |
+
self.cond_embed = nn.Linear(z_channels, model_channels)
|
183 |
+
|
184 |
+
self.input_proj = nn.Linear(in_channels, model_channels)
|
185 |
+
|
186 |
+
res_blocks = []
|
187 |
+
for i in range(num_res_blocks):
|
188 |
+
res_blocks.append(ResBlock(
|
189 |
+
model_channels,
|
190 |
+
))
|
191 |
+
|
192 |
+
self.res_blocks = nn.ModuleList(res_blocks)
|
193 |
+
self.final_layer = FinalLayer(model_channels, out_channels)
|
194 |
+
|
195 |
+
self.initialize_weights()
|
196 |
+
|
197 |
+
def initialize_weights(self):
|
198 |
+
def _basic_init(module):
|
199 |
+
if isinstance(module, nn.Linear):
|
200 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
201 |
+
if module.bias is not None:
|
202 |
+
nn.init.constant_(module.bias, 0)
|
203 |
+
self.apply(_basic_init)
|
204 |
+
|
205 |
+
# Initialize timestep embedding MLP
|
206 |
+
nn.init.normal_(self.time_embed.mlp[0].weight, std=0.02)
|
207 |
+
nn.init.normal_(self.time_embed.mlp[2].weight, std=0.02)
|
208 |
+
|
209 |
+
# Zero-out adaLN modulation layers
|
210 |
+
for block in self.res_blocks:
|
211 |
+
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
|
212 |
+
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
|
213 |
+
|
214 |
+
# Zero-out output layers
|
215 |
+
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
|
216 |
+
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
|
217 |
+
nn.init.constant_(self.final_layer.linear.weight, 0)
|
218 |
+
nn.init.constant_(self.final_layer.linear.bias, 0)
|
219 |
+
|
220 |
+
def forward(self, x, t, c):
|
221 |
+
"""
|
222 |
+
Apply the model to an input batch.
|
223 |
+
:param x: an [N x C] Tensor of inputs.
|
224 |
+
:param t: a 1-D batch of timesteps.
|
225 |
+
:param c: conditioning from AR transformer.
|
226 |
+
:return: an [N x C] Tensor of outputs.
|
227 |
+
"""
|
228 |
+
x = self.input_proj(x)
|
229 |
+
t = self.time_embed(t)
|
230 |
+
c = self.cond_embed(c)
|
231 |
+
y = t + c
|
232 |
+
|
233 |
+
for block in self.res_blocks:
|
234 |
+
x = block(x, y)
|
235 |
+
|
236 |
+
return self.final_layer(x, y)
|
generation_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.40.1"
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:414435b508391f92afadd2aaeec418c806776aeccbce12e638d73a139ca5ca78
|
3 |
+
size 513341448
|
modeling_sundial.py
ADDED
@@ -0,0 +1,574 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple, List, Union
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from transformers import PreTrainedModel, Cache, DynamicCache
|
6 |
+
from transformers.activations import ACT2FN
|
7 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
8 |
+
from transformers.modeling_outputs import MoeModelOutputWithPast, MoeCausalLMOutputWithPast
|
9 |
+
from .configuration_sundial import SundialConfig
|
10 |
+
from .ts_generation_mixin import TSGenerationMixin
|
11 |
+
from .flow_loss import FlowLoss
|
12 |
+
|
13 |
+
|
14 |
+
def rotate_half(x):
|
15 |
+
x1 = x[..., : x.shape[-1] // 2]
|
16 |
+
x2 = x[..., x.shape[-1] // 2:]
|
17 |
+
return torch.cat((-x2, x1), dim=-1)
|
18 |
+
|
19 |
+
|
20 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
21 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
22 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
23 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
24 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
25 |
+
return q_embed, k_embed
|
26 |
+
|
27 |
+
|
28 |
+
class SundialPatchEmbedding(nn.Module):
|
29 |
+
def __init__(self, config: SundialConfig):
|
30 |
+
super().__init__()
|
31 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
32 |
+
self.hidden_layer = nn.Linear(
|
33 |
+
config.input_token_len * 2, config.intermediate_size)
|
34 |
+
self.act = ACT2FN[config.hidden_act]
|
35 |
+
self.output_layer = nn.Linear(
|
36 |
+
config.intermediate_size, config.hidden_size)
|
37 |
+
self.residual_layer = nn.Linear(
|
38 |
+
config.input_token_len * 2, config.hidden_size)
|
39 |
+
self.input_token_len = config.input_token_len
|
40 |
+
|
41 |
+
def forward(self, x):
|
42 |
+
mask = torch.ones_like(x, dtype=torch.float32)
|
43 |
+
input_length = x.shape[-1]
|
44 |
+
padding_length = (self.input_token_len - (input_length %
|
45 |
+
self.input_token_len)) % self.input_token_len
|
46 |
+
x = F.pad(x, (padding_length, 0))
|
47 |
+
mask = F.pad(mask, (padding_length, 0))
|
48 |
+
x = x.unfold(dimension=-1, size=self.input_token_len,
|
49 |
+
step=self.input_token_len)
|
50 |
+
mask = mask.unfold(
|
51 |
+
dimension=-1, size=self.input_token_len, step=self.input_token_len)
|
52 |
+
|
53 |
+
x = torch.cat([x, mask], dim=-1)
|
54 |
+
hid = self.act(self.hidden_layer(x))
|
55 |
+
out = self.dropout(self.output_layer(hid))
|
56 |
+
res = self.residual_layer(x)
|
57 |
+
out = out + res
|
58 |
+
return out
|
59 |
+
|
60 |
+
|
61 |
+
class SundialRotaryEmbedding(torch.nn.Module):
|
62 |
+
def __init__(self, dim, max_position_embeddings=10000, base=10000, device=None):
|
63 |
+
super().__init__()
|
64 |
+
self.dim = dim
|
65 |
+
self.max_position_embeddings = max_position_embeddings
|
66 |
+
self.base = base
|
67 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim,
|
68 |
+
2, dtype=torch.int64).float().to(device) / self.dim))
|
69 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
70 |
+
|
71 |
+
# Build here to make `torch.jit.trace` work.
|
72 |
+
self._set_cos_sin_cache(
|
73 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
74 |
+
)
|
75 |
+
|
76 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
77 |
+
self.max_seq_len_cached = seq_len
|
78 |
+
t = torch.arange(self.max_seq_len_cached, device=device,
|
79 |
+
dtype=torch.int64).type_as(self.inv_freq)
|
80 |
+
|
81 |
+
freqs = torch.outer(t, self.inv_freq)
|
82 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
83 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
84 |
+
self.register_buffer(
|
85 |
+
"cos_cached", emb.cos().to(dtype), persistent=False)
|
86 |
+
self.register_buffer(
|
87 |
+
"sin_cached", emb.sin().to(dtype), persistent=False)
|
88 |
+
|
89 |
+
def forward(self, x, seq_len=None):
|
90 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
91 |
+
if seq_len > self.max_seq_len_cached:
|
92 |
+
self._set_cos_sin_cache(
|
93 |
+
seq_len=seq_len, device=x.device, dtype=x.dtype)
|
94 |
+
|
95 |
+
return (
|
96 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
97 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
98 |
+
)
|
99 |
+
|
100 |
+
|
101 |
+
class SundialAttention(nn.Module):
|
102 |
+
def __init__(self, config: SundialConfig, layer_idx: Optional[int] = None):
|
103 |
+
super().__init__()
|
104 |
+
self.layer_idx = layer_idx
|
105 |
+
self.hidden_size = config.hidden_size
|
106 |
+
self.num_heads = config.num_attention_heads
|
107 |
+
self.head_dim = self.hidden_size // self.num_heads
|
108 |
+
self.attention_dropout = config.dropout_rate
|
109 |
+
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
|
110 |
+
self.k_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
|
111 |
+
self.v_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
|
112 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
113 |
+
self.rotary_emb = SundialRotaryEmbedding(
|
114 |
+
self.head_dim, max_position_embeddings=config.max_position_embeddings)
|
115 |
+
|
116 |
+
def forward(
|
117 |
+
self,
|
118 |
+
hidden_states: torch.Tensor,
|
119 |
+
attention_mask: Optional[torch.Tensor] = None,
|
120 |
+
position_ids: Optional[torch.LongTensor] = None,
|
121 |
+
past_key_value: Optional[Cache] = None,
|
122 |
+
output_attentions: bool = False,
|
123 |
+
**kwargs,
|
124 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
125 |
+
bsz, q_len, _ = hidden_states.size()
|
126 |
+
|
127 |
+
query_states = self.q_proj(hidden_states)
|
128 |
+
key_states = self.k_proj(hidden_states)
|
129 |
+
value_states = self.v_proj(hidden_states)
|
130 |
+
|
131 |
+
query_states = query_states.view(
|
132 |
+
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
133 |
+
key_states = key_states.view(
|
134 |
+
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
135 |
+
value_states = value_states.view(
|
136 |
+
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
137 |
+
|
138 |
+
kv_seq_len = key_states.shape[-2]
|
139 |
+
if past_key_value is not None:
|
140 |
+
kv_seq_len += past_key_value.get_usable_length(
|
141 |
+
kv_seq_len, self.layer_idx)
|
142 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
143 |
+
query_states, key_states = apply_rotary_pos_emb(
|
144 |
+
query_states, key_states, cos, sin, position_ids)
|
145 |
+
|
146 |
+
if past_key_value is not None:
|
147 |
+
key_states, value_states = past_key_value.update(
|
148 |
+
key_states, value_states, self.layer_idx)
|
149 |
+
|
150 |
+
attn_output = F.scaled_dot_product_attention(
|
151 |
+
query_states, key_states, value_states, attention_mask, dropout_p=(self.attention_dropout if self.training else 0.0))
|
152 |
+
|
153 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
154 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
155 |
+
attn_output = self.o_proj(attn_output)
|
156 |
+
|
157 |
+
if not output_attentions:
|
158 |
+
attn_weights = None
|
159 |
+
|
160 |
+
return attn_output, attn_weights, past_key_value
|
161 |
+
|
162 |
+
|
163 |
+
class SundialMLP(nn.Module):
|
164 |
+
def __init__(self, hidden_size: int, intermediate_size: int, hidden_act: str):
|
165 |
+
super().__init__()
|
166 |
+
self.hidden_size = hidden_size
|
167 |
+
self.intermediate_size = intermediate_size
|
168 |
+
self.gate_proj = nn.Linear(
|
169 |
+
self.hidden_size, self.intermediate_size, bias=False)
|
170 |
+
self.up_proj = nn.Linear(
|
171 |
+
self.hidden_size, self.intermediate_size, bias=False)
|
172 |
+
self.down_proj = nn.Linear(
|
173 |
+
self.intermediate_size, self.hidden_size, bias=False)
|
174 |
+
self.act_fn = ACT2FN[hidden_act]
|
175 |
+
|
176 |
+
def forward(self, hidden_state):
|
177 |
+
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
|
178 |
+
|
179 |
+
|
180 |
+
class SundialDecoderLayer(nn.Module):
|
181 |
+
def __init__(self, config: SundialConfig, layer_idx: int):
|
182 |
+
super().__init__()
|
183 |
+
self.self_attn = SundialAttention(config, layer_idx)
|
184 |
+
|
185 |
+
self.ffn_layer = SundialMLP(
|
186 |
+
hidden_size=config.hidden_size,
|
187 |
+
intermediate_size=config.intermediate_size,
|
188 |
+
hidden_act=config.hidden_act,
|
189 |
+
)
|
190 |
+
self.norm1 = torch.nn.LayerNorm(config.hidden_size)
|
191 |
+
self.norm2 = torch.nn.LayerNorm(config.hidden_size)
|
192 |
+
|
193 |
+
def forward(
|
194 |
+
self,
|
195 |
+
hidden_states: torch.Tensor,
|
196 |
+
attention_mask: Optional[torch.Tensor] = None,
|
197 |
+
position_ids: Optional[torch.LongTensor] = None,
|
198 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
199 |
+
output_attentions: Optional[bool] = False,
|
200 |
+
use_cache: Optional[bool] = False,
|
201 |
+
**kwargs,
|
202 |
+
) -> Tuple[torch.FloatTensor, torch.FloatTensor, Optional[torch.FloatTensor], Optional[torch.FloatTensor]]:
|
203 |
+
residual = hidden_states
|
204 |
+
|
205 |
+
hidden_states = self.norm1(hidden_states)
|
206 |
+
|
207 |
+
# Self Attention
|
208 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
209 |
+
hidden_states=hidden_states,
|
210 |
+
attention_mask=attention_mask,
|
211 |
+
position_ids=position_ids,
|
212 |
+
past_key_value=past_key_value,
|
213 |
+
output_attentions=output_attentions,
|
214 |
+
use_cache=use_cache,
|
215 |
+
)
|
216 |
+
hidden_states = residual + hidden_states
|
217 |
+
|
218 |
+
# Fully Connected
|
219 |
+
residual = hidden_states
|
220 |
+
hidden_states = self.norm2(hidden_states)
|
221 |
+
hidden_states = self.ffn_layer(hidden_states)
|
222 |
+
hidden_states = residual + hidden_states
|
223 |
+
|
224 |
+
if not output_attentions:
|
225 |
+
self_attn_weights = None
|
226 |
+
|
227 |
+
if not use_cache:
|
228 |
+
present_key_value = None
|
229 |
+
return hidden_states, self_attn_weights, present_key_value
|
230 |
+
|
231 |
+
|
232 |
+
class SundialPreTrainedModel(PreTrainedModel):
|
233 |
+
config_class = SundialConfig
|
234 |
+
base_model_prefix = "model"
|
235 |
+
supports_gradient_checkpointing = True
|
236 |
+
_no_split_modules = ["SundialDecoderLayer"]
|
237 |
+
_skip_keys_device_placement = "past_key_values"
|
238 |
+
_supports_flash_attn_2 = True
|
239 |
+
_supports_sdpa = False
|
240 |
+
_supports_cache_class = True
|
241 |
+
|
242 |
+
def _init_weights(self, module):
|
243 |
+
std = self.config.initializer_range
|
244 |
+
if isinstance(module, torch.nn.Linear):
|
245 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
246 |
+
if module.bias is not None:
|
247 |
+
module.bias.data.zero_()
|
248 |
+
elif isinstance(module, torch.nn.Embedding):
|
249 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
250 |
+
if module.padding_idx is not None:
|
251 |
+
module.weight.data[module.padding_idx].zero_()
|
252 |
+
|
253 |
+
|
254 |
+
class SundialModel(SundialPreTrainedModel):
|
255 |
+
def __init__(self, config: SundialConfig):
|
256 |
+
super().__init__(config)
|
257 |
+
self.embed_layer = SundialPatchEmbedding(config)
|
258 |
+
self.layers = nn.ModuleList(
|
259 |
+
[SundialDecoderLayer(config, layer_idx)
|
260 |
+
for layer_idx in range(config.num_hidden_layers)]
|
261 |
+
)
|
262 |
+
self.norm = torch.nn.LayerNorm(config.hidden_size)
|
263 |
+
self.gradient_checkpointing = False
|
264 |
+
|
265 |
+
def forward(
|
266 |
+
self,
|
267 |
+
input_ids: torch.FloatTensor = None,
|
268 |
+
attention_mask: Optional[torch.Tensor] = None,
|
269 |
+
position_ids: Optional[torch.LongTensor] = None,
|
270 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
271 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
272 |
+
use_cache: Optional[bool] = None,
|
273 |
+
output_attentions: Optional[bool] = None,
|
274 |
+
output_hidden_states: Optional[bool] = None,
|
275 |
+
return_dict: Optional[bool] = None,
|
276 |
+
) -> Union[Tuple, MoeModelOutputWithPast]:
|
277 |
+
# input_ids is the input of time series, its shape is [batch_size, seq_len]
|
278 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
279 |
+
output_hidden_states = (
|
280 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
281 |
+
)
|
282 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
283 |
+
|
284 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
285 |
+
|
286 |
+
# retrieve input_ids and inputs_embeds
|
287 |
+
if input_ids is not None and inputs_embeds is not None:
|
288 |
+
raise ValueError(
|
289 |
+
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
290 |
+
elif input_ids is not None:
|
291 |
+
batch_size, seq_length = input_ids.shape
|
292 |
+
elif inputs_embeds is not None:
|
293 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
294 |
+
else:
|
295 |
+
raise ValueError(
|
296 |
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
297 |
+
|
298 |
+
if inputs_embeds is None:
|
299 |
+
inputs_embeds = self.embed_layer(input_ids)
|
300 |
+
seq_length = inputs_embeds.shape[1]
|
301 |
+
|
302 |
+
if self.gradient_checkpointing and self.training:
|
303 |
+
if use_cache:
|
304 |
+
use_cache = False
|
305 |
+
|
306 |
+
past_key_values_length = 0
|
307 |
+
|
308 |
+
if use_cache:
|
309 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
310 |
+
if use_legacy_cache:
|
311 |
+
past_key_values = DynamicCache.from_legacy_cache(
|
312 |
+
past_key_values)
|
313 |
+
past_key_values_length = past_key_values.get_usable_length(
|
314 |
+
seq_length)
|
315 |
+
|
316 |
+
if position_ids is None:
|
317 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
318 |
+
position_ids = torch.arange(
|
319 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
320 |
+
)
|
321 |
+
# position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
322 |
+
position_ids = position_ids.view(-1, seq_length)
|
323 |
+
else:
|
324 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
325 |
+
|
326 |
+
# 4d mask is passed through the layers
|
327 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
328 |
+
attention_mask,
|
329 |
+
(batch_size, seq_length),
|
330 |
+
inputs_embeds,
|
331 |
+
past_key_values_length,
|
332 |
+
sliding_window=None,
|
333 |
+
)
|
334 |
+
|
335 |
+
hidden_states = inputs_embeds
|
336 |
+
|
337 |
+
# decoder layers
|
338 |
+
all_hidden_states = () if output_hidden_states else None
|
339 |
+
all_self_attns = () if output_attentions else None
|
340 |
+
next_decoder_cache = None
|
341 |
+
|
342 |
+
for decoder_layer in self.layers:
|
343 |
+
if output_hidden_states:
|
344 |
+
all_hidden_states += (hidden_states,)
|
345 |
+
|
346 |
+
if self.gradient_checkpointing and self.training:
|
347 |
+
layer_outputs = self._gradient_checkpointing_func(
|
348 |
+
decoder_layer.__call__,
|
349 |
+
hidden_states,
|
350 |
+
attention_mask,
|
351 |
+
position_ids,
|
352 |
+
past_key_values,
|
353 |
+
output_attentions,
|
354 |
+
use_cache,
|
355 |
+
)
|
356 |
+
else:
|
357 |
+
layer_outputs = decoder_layer(
|
358 |
+
hidden_states,
|
359 |
+
attention_mask=attention_mask,
|
360 |
+
position_ids=position_ids,
|
361 |
+
past_key_value=past_key_values,
|
362 |
+
output_attentions=output_attentions,
|
363 |
+
use_cache=use_cache,
|
364 |
+
)
|
365 |
+
|
366 |
+
hidden_states = layer_outputs[0]
|
367 |
+
|
368 |
+
if output_attentions:
|
369 |
+
all_self_attns += (layer_outputs[1],)
|
370 |
+
|
371 |
+
if use_cache:
|
372 |
+
next_decoder_cache = layer_outputs[2]
|
373 |
+
|
374 |
+
hidden_states = self.norm(hidden_states)
|
375 |
+
# add hidden states from the last decoder layer
|
376 |
+
if output_hidden_states:
|
377 |
+
all_hidden_states += (hidden_states,)
|
378 |
+
|
379 |
+
next_cache = None
|
380 |
+
if use_cache:
|
381 |
+
next_cache = next_decoder_cache.to_legacy_cache(
|
382 |
+
) if use_legacy_cache else next_decoder_cache
|
383 |
+
|
384 |
+
if not return_dict:
|
385 |
+
return tuple(
|
386 |
+
v
|
387 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
388 |
+
if v is not None
|
389 |
+
)
|
390 |
+
return MoeModelOutputWithPast(
|
391 |
+
last_hidden_state=hidden_states,
|
392 |
+
past_key_values=next_cache,
|
393 |
+
hidden_states=all_hidden_states,
|
394 |
+
attentions=all_self_attns,
|
395 |
+
)
|
396 |
+
|
397 |
+
|
398 |
+
class SundialForPrediction(SundialPreTrainedModel, TSGenerationMixin):
|
399 |
+
def __init__(self, config: SundialConfig):
|
400 |
+
super().__init__(config)
|
401 |
+
self.config = config
|
402 |
+
self.model = SundialModel(self.config)
|
403 |
+
self.flow_loss = FlowLoss(self.config.output_token_lens[-1], self.config.hidden_size,
|
404 |
+
self.config.flow_loss_depth, self.config.hidden_size, self.config.num_sampling_steps)
|
405 |
+
self.post_init()
|
406 |
+
|
407 |
+
def set_decoder(self, decoder):
|
408 |
+
self.model = decoder
|
409 |
+
|
410 |
+
def get_decoder(self):
|
411 |
+
return self.model
|
412 |
+
|
413 |
+
def forward(
|
414 |
+
self,
|
415 |
+
input_ids: torch.FloatTensor = None,
|
416 |
+
attention_mask: Optional[torch.Tensor] = None,
|
417 |
+
position_ids: Optional[torch.LongTensor] = None,
|
418 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
419 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
420 |
+
labels: Optional[torch.FloatTensor] = None,
|
421 |
+
loss_masks: Optional[torch.FloatTensor] = None,
|
422 |
+
mask_y: Optional[torch.FloatTensor] = None,
|
423 |
+
use_cache: Optional[bool] = None,
|
424 |
+
output_attentions: Optional[bool] = None,
|
425 |
+
output_hidden_states: Optional[bool] = None,
|
426 |
+
return_dict: Optional[bool] = None,
|
427 |
+
max_output_length: Optional[int] = None,
|
428 |
+
revin: Optional[bool] = False,
|
429 |
+
num_samples: Optional[int] = 1,
|
430 |
+
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
431 |
+
|
432 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
433 |
+
output_hidden_states = (
|
434 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
435 |
+
)
|
436 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
437 |
+
|
438 |
+
if revin:
|
439 |
+
means = input_ids.mean(1, keepdim=True).detach()
|
440 |
+
stdev = input_ids.std(dim=1, keepdim=True, unbiased=False).detach()
|
441 |
+
stdev = torch.where(stdev > 1e-2, stdev, torch.tensor(1.0, device=input_ids.device))
|
442 |
+
input_ids = (input_ids - means) / stdev
|
443 |
+
outputs = self.model(
|
444 |
+
input_ids=input_ids,
|
445 |
+
attention_mask=attention_mask,
|
446 |
+
position_ids=position_ids,
|
447 |
+
past_key_values=past_key_values,
|
448 |
+
inputs_embeds=inputs_embeds,
|
449 |
+
use_cache=use_cache,
|
450 |
+
output_attentions=output_attentions,
|
451 |
+
output_hidden_states=output_hidden_states,
|
452 |
+
return_dict=return_dict,
|
453 |
+
)
|
454 |
+
|
455 |
+
hidden_states = outputs[0] if not return_dict else outputs.last_hidden_state
|
456 |
+
predictions = None
|
457 |
+
|
458 |
+
loss = None
|
459 |
+
if labels is not None:
|
460 |
+
if revin:
|
461 |
+
labels = (labels - means) / stdev
|
462 |
+
output_token_len = self.config.output_token_lens[-1]
|
463 |
+
seq_len = hidden_states.shape[1] * self.config.input_token_len
|
464 |
+
labels = labels[:, :seq_len -
|
465 |
+
self.config.input_token_len + output_token_len]
|
466 |
+
shift_labels = labels.unfold(
|
467 |
+
dimension=-1, size=output_token_len, step=self.config.input_token_len)
|
468 |
+
|
469 |
+
bsz, L, _ = shift_labels.shape
|
470 |
+
shift_labels = shift_labels.reshape(
|
471 |
+
bsz * L, -1).repeat(self.config.diffusion_batch_mul, 1)
|
472 |
+
hidden_states = hidden_states.reshape(
|
473 |
+
bsz * L, -1).repeat(self.config.diffusion_batch_mul, 1)
|
474 |
+
loss_masks = loss_masks.reshape(
|
475 |
+
bsz * L).repeat(self.config.diffusion_batch_mul)
|
476 |
+
mask_y = mask_y.repeat(L * self.config.diffusion_batch_mul, 1)
|
477 |
+
|
478 |
+
loss = self.flow_loss(shift_labels, hidden_states, loss_masks, mask_y)
|
479 |
+
else:
|
480 |
+
if max_output_length is None:
|
481 |
+
output_token_len = self.config.output_token_lens[0]
|
482 |
+
max_output_length = output_token_len
|
483 |
+
else:
|
484 |
+
output_token_len = self.config.output_token_lens[0]
|
485 |
+
for h in self.config.output_token_lens[1:]:
|
486 |
+
if h > max_output_length:
|
487 |
+
break
|
488 |
+
else:
|
489 |
+
output_token_len = h
|
490 |
+
|
491 |
+
bsz = hidden_states.shape[0]
|
492 |
+
hidden_states = hidden_states[:, -1, :]
|
493 |
+
predictions = self.flow_loss.sample(hidden_states, num_samples)
|
494 |
+
if output_token_len > max_output_length:
|
495 |
+
predictions = predictions[:, :, :max_output_length]
|
496 |
+
if revin:
|
497 |
+
predictions = predictions * stdev + means
|
498 |
+
if not return_dict:
|
499 |
+
output = (predictions,) + outputs[1:]
|
500 |
+
return (loss) + output if loss is not None else output
|
501 |
+
|
502 |
+
return MoeCausalLMOutputWithPast(
|
503 |
+
loss=loss,
|
504 |
+
logits=predictions,
|
505 |
+
past_key_values=outputs.past_key_values,
|
506 |
+
hidden_states=outputs.hidden_states,
|
507 |
+
attentions=outputs.attentions,
|
508 |
+
)
|
509 |
+
|
510 |
+
def prepare_inputs_for_generation(
|
511 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, revin=False, num_samples=1, **kwargs
|
512 |
+
):
|
513 |
+
# Omit tokens covered by past_key_values
|
514 |
+
if past_key_values is not None:
|
515 |
+
if isinstance(past_key_values, Cache):
|
516 |
+
cache_length = past_key_values.get_seq_length()
|
517 |
+
if isinstance(past_key_values, DynamicCache):
|
518 |
+
past_length = past_key_values.seen_tokens
|
519 |
+
else:
|
520 |
+
past_length = cache_length
|
521 |
+
|
522 |
+
max_cache_length = past_key_values.get_max_length()
|
523 |
+
else:
|
524 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
525 |
+
max_cache_length = None
|
526 |
+
|
527 |
+
# Keep only the unprocessed tokens:
|
528 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
529 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
530 |
+
# input)
|
531 |
+
if attention_mask is not None and attention_mask.shape[1] > (input_ids.shape[1] // self.config.input_token_len):
|
532 |
+
input_ids = input_ids[:, -
|
533 |
+
(attention_mask.shape[1] - past_length) * self.config.input_token_len:]
|
534 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
535 |
+
# input_ids based on the past_length.
|
536 |
+
elif past_length < (input_ids.shape[1] // self.config.input_token_len):
|
537 |
+
input_ids = input_ids[:, past_length *
|
538 |
+
self.config.input_token_len:]
|
539 |
+
# 3 - Otherwise (past_length >= (input_ids.shape[1] // self.config.input_token_len)), let's assume input_ids only has unprocessed tokens.
|
540 |
+
|
541 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
542 |
+
if (
|
543 |
+
max_cache_length is not None
|
544 |
+
and attention_mask is not None
|
545 |
+
and cache_length + (input_ids.shape[1] // self.config.input_token_len) > max_cache_length
|
546 |
+
):
|
547 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
548 |
+
|
549 |
+
position_ids = kwargs.get("position_ids", None)
|
550 |
+
if attention_mask is not None and position_ids is None:
|
551 |
+
# create position_ids on the fly for batch generation
|
552 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
553 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
554 |
+
if past_key_values:
|
555 |
+
position_ids = position_ids[:, -
|
556 |
+
(input_ids.shape[1] // self.config.input_token_len):]
|
557 |
+
|
558 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
559 |
+
if inputs_embeds is not None and past_key_values is None:
|
560 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
561 |
+
else:
|
562 |
+
model_inputs = {"input_ids": input_ids}
|
563 |
+
|
564 |
+
model_inputs.update(
|
565 |
+
{
|
566 |
+
"position_ids": position_ids,
|
567 |
+
"past_key_values": past_key_values,
|
568 |
+
"use_cache": kwargs.get("use_cache"),
|
569 |
+
"attention_mask": attention_mask,
|
570 |
+
"revin": revin,
|
571 |
+
"num_samples": num_samples,
|
572 |
+
}
|
573 |
+
)
|
574 |
+
return model_inputs
|
ts_generation_mixin.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
from typing import Any, Dict, List, Optional, Union, Callable
|
3 |
+
import torch
|
4 |
+
from transformers import GenerationMixin, LogitsProcessorList, StoppingCriteriaList
|
5 |
+
from transformers.generation import validate_stopping_criteria, EosTokenCriteria
|
6 |
+
from transformers.generation.utils import GenerateNonBeamOutput, GenerateEncoderDecoderOutput, GenerateDecoderOnlyOutput, GenerationConfig, GenerateOutput
|
7 |
+
from transformers.utils import ModelOutput
|
8 |
+
|
9 |
+
|
10 |
+
class TSGenerationMixin(GenerationMixin):
|
11 |
+
@torch.no_grad()
|
12 |
+
def generate(
|
13 |
+
self,
|
14 |
+
inputs: Optional[torch.Tensor] = None,
|
15 |
+
generation_config: Optional[GenerationConfig] = None,
|
16 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
17 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
18 |
+
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
19 |
+
synced_gpus: Optional[bool] = None,
|
20 |
+
assistant_model: Optional["PreTrainedModel"] = None,
|
21 |
+
streamer: Optional["BaseStreamer"] = None,
|
22 |
+
negative_prompt_ids: Optional[torch.Tensor] = None,
|
23 |
+
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
24 |
+
revin: Optional[bool] = True,
|
25 |
+
num_samples: Optional[int] = 1,
|
26 |
+
**kwargs,
|
27 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
28 |
+
if len(inputs.shape) != 2:
|
29 |
+
raise ValueError('Input shape must be: [batch_size, seq_len]')
|
30 |
+
if revin:
|
31 |
+
means = inputs.mean(dim=-1, keepdim=True)
|
32 |
+
stdev = inputs.std(dim=-1, keepdim=True, unbiased=False) + 1e-5
|
33 |
+
inputs = (inputs - means) / stdev
|
34 |
+
outputs = super().generate(inputs=inputs, generation_config=generation_config, logits_processor=logits_processor, stopping_criteria=stopping_criteria, prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, synced_gpus=synced_gpus, assistant_model=assistant_model, streamer=streamer, negative_prompt_ids=negative_prompt_ids, negative_prompt_attention_mask=negative_prompt_attention_mask, num_samples=num_samples, **kwargs)
|
35 |
+
if revin:
|
36 |
+
stdev = stdev.unsqueeze(1).repeat(1, num_samples, 1)
|
37 |
+
means = means.unsqueeze(1).repeat(1, num_samples, 1)
|
38 |
+
outputs = (outputs * stdev) + means
|
39 |
+
return outputs
|
40 |
+
|
41 |
+
def _greedy_search(
|
42 |
+
self,
|
43 |
+
input_ids: torch.Tensor,
|
44 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
45 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
46 |
+
max_length: Optional[int] = None,
|
47 |
+
pad_token_id: Optional[int] = None,
|
48 |
+
eos_token_id: Optional[Union[int, List[int]]] = None,
|
49 |
+
output_attentions: Optional[bool] = None,
|
50 |
+
output_hidden_states: Optional[bool] = None,
|
51 |
+
output_scores: Optional[bool] = None,
|
52 |
+
output_logits: Optional[bool] = None,
|
53 |
+
return_dict_in_generate: Optional[bool] = None,
|
54 |
+
synced_gpus: bool = False,
|
55 |
+
streamer: Optional["BaseStreamer"] = None,
|
56 |
+
**model_kwargs,
|
57 |
+
) -> Union[GenerateNonBeamOutput, torch.Tensor]:
|
58 |
+
input_ids = input_ids.to(self.device)
|
59 |
+
batch_size, cur_len = input_ids.shape
|
60 |
+
# init values
|
61 |
+
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
62 |
+
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
63 |
+
if max_length is not None:
|
64 |
+
warnings.warn(
|
65 |
+
"`max_length` is deprecated in this function, use"
|
66 |
+
" `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
|
67 |
+
UserWarning,
|
68 |
+
)
|
69 |
+
stopping_criteria = validate_stopping_criteria(
|
70 |
+
stopping_criteria, max_length)
|
71 |
+
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
|
72 |
+
if eos_token_id is not None:
|
73 |
+
stopping_criteria.append(
|
74 |
+
EosTokenCriteria(eos_token_id=eos_token_id))
|
75 |
+
else:
|
76 |
+
# remove when the method is totally private
|
77 |
+
# need to get `eos_token_id` and add stopping criteria, so that generation does not go forever
|
78 |
+
eos_token_id = [
|
79 |
+
criteria.eos_token_id.tolist() for criteria in stopping_criteria if hasattr(criteria, "eos_token_id")
|
80 |
+
]
|
81 |
+
eos_token_id = eos_token_id[0] if eos_token_id else None
|
82 |
+
if eos_token_id is None and self.generation_config.eos_token_id is not None:
|
83 |
+
eos_token_id = self.generation_config.eos_token_id
|
84 |
+
stopping_criteria.append(
|
85 |
+
EosTokenCriteria(eos_token_id=eos_token_id))
|
86 |
+
|
87 |
+
if isinstance(eos_token_id, int):
|
88 |
+
eos_token_id = [eos_token_id]
|
89 |
+
output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
|
90 |
+
output_attentions = (
|
91 |
+
output_attentions if output_attentions is not None else self.generation_config.output_attentions
|
92 |
+
)
|
93 |
+
output_hidden_states = (
|
94 |
+
output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
|
95 |
+
)
|
96 |
+
return_dict_in_generate = (
|
97 |
+
return_dict_in_generate
|
98 |
+
if return_dict_in_generate is not None
|
99 |
+
else self.generation_config.return_dict_in_generate
|
100 |
+
)
|
101 |
+
|
102 |
+
# init attention / hidden states / scores tuples
|
103 |
+
raw_logits = () if (return_dict_in_generate and output_logits) else None
|
104 |
+
scores = () if (return_dict_in_generate and output_scores) else None
|
105 |
+
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
|
106 |
+
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
|
107 |
+
decoder_hidden_states = () if (
|
108 |
+
return_dict_in_generate and output_hidden_states) else None
|
109 |
+
|
110 |
+
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
|
111 |
+
if return_dict_in_generate and self.config.is_encoder_decoder:
|
112 |
+
encoder_attentions = model_kwargs["encoder_outputs"].get(
|
113 |
+
"attentions") if output_attentions else None
|
114 |
+
encoder_hidden_states = (
|
115 |
+
model_kwargs["encoder_outputs"].get(
|
116 |
+
"hidden_states") if output_hidden_states else None
|
117 |
+
)
|
118 |
+
|
119 |
+
# keep track of which sequences are already finished
|
120 |
+
if "inputs_embeds" in model_kwargs:
|
121 |
+
cur_len = model_kwargs["inputs_embeds"].shape[1]
|
122 |
+
this_peer_finished = False
|
123 |
+
unfinished_sequences = torch.ones(
|
124 |
+
batch_size, dtype=torch.long, device=input_ids.device)
|
125 |
+
model_kwargs["cache_position"] = torch.arange(
|
126 |
+
cur_len, device=input_ids.device)
|
127 |
+
true_seq_len = (cur_len + self.config.input_token_len - 1) // self.config.input_token_len
|
128 |
+
model_kwargs["attention_mask"] = model_kwargs["attention_mask"][:, -true_seq_len:]
|
129 |
+
max_length = stopping_criteria.max_length
|
130 |
+
generate_results = None
|
131 |
+
while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
|
132 |
+
# prepare model inputs
|
133 |
+
model_inputs = self.prepare_inputs_for_generation(
|
134 |
+
input_ids, **model_kwargs)
|
135 |
+
|
136 |
+
input_length = input_ids.shape[1]
|
137 |
+
|
138 |
+
# forward pass to get next token
|
139 |
+
outputs = self(
|
140 |
+
**model_inputs,
|
141 |
+
return_dict=True,
|
142 |
+
output_attentions=output_attentions,
|
143 |
+
output_hidden_states=output_hidden_states,
|
144 |
+
max_output_length=max_length - input_length,
|
145 |
+
)
|
146 |
+
|
147 |
+
if synced_gpus and this_peer_finished:
|
148 |
+
continue # don't waste resources running the code we don't need
|
149 |
+
next_token_logits = outputs.logits
|
150 |
+
|
151 |
+
# pre-process distribution
|
152 |
+
next_tokens_scores = logits_processor(input_ids, next_token_logits)
|
153 |
+
|
154 |
+
# Store scores, attentions and hidden_states when required
|
155 |
+
if return_dict_in_generate:
|
156 |
+
if output_scores:
|
157 |
+
scores += (next_tokens_scores,)
|
158 |
+
if output_logits:
|
159 |
+
raw_logits += (next_token_logits,)
|
160 |
+
if output_attentions:
|
161 |
+
decoder_attentions += (
|
162 |
+
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (
|
163 |
+
outputs.attentions,)
|
164 |
+
)
|
165 |
+
if self.config.is_encoder_decoder:
|
166 |
+
cross_attentions += (outputs.cross_attentions,)
|
167 |
+
|
168 |
+
if output_hidden_states:
|
169 |
+
decoder_hidden_states += (
|
170 |
+
(outputs.decoder_hidden_states,)
|
171 |
+
if self.config.is_encoder_decoder
|
172 |
+
else (outputs.hidden_states,)
|
173 |
+
)
|
174 |
+
|
175 |
+
# argmax
|
176 |
+
# next_tokens = torch.argmax(next_tokens_scores, dim=-1)
|
177 |
+
next_tokens = next_tokens_scores
|
178 |
+
|
179 |
+
# finished sentences should have their next token be a padding token
|
180 |
+
if eos_token_id is not None:
|
181 |
+
if pad_token_id is None:
|
182 |
+
raise ValueError(
|
183 |
+
"If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
|
184 |
+
next_tokens = next_tokens * unfinished_sequences + \
|
185 |
+
pad_token_id * (1 - unfinished_sequences)
|
186 |
+
|
187 |
+
# update generated ids, model inputs, and length for next step
|
188 |
+
horizon_length = next_tokens.shape[-1] // self.config.input_token_len
|
189 |
+
|
190 |
+
past_key_values = model_kwargs.get("past_key_values")
|
191 |
+
if past_key_values is None:
|
192 |
+
generate_results = next_tokens
|
193 |
+
else:
|
194 |
+
generate_results = torch.cat([generate_results, next_tokens], dim=-1)
|
195 |
+
input_ids = torch.cat([input_ids, next_tokens.median(dim=1)[0]], dim=-1)
|
196 |
+
|
197 |
+
if streamer is not None:
|
198 |
+
streamer.put(next_tokens.cpu())
|
199 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
200 |
+
outputs,
|
201 |
+
model_kwargs,
|
202 |
+
horizon_length=horizon_length,
|
203 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
204 |
+
)
|
205 |
+
unfinished_sequences = unfinished_sequences & ~stopping_criteria(
|
206 |
+
input_ids, scores)
|
207 |
+
this_peer_finished = unfinished_sequences.max() == 0
|
208 |
+
|
209 |
+
if input_ids.shape[-1] > max_length:
|
210 |
+
input_ids = input_ids[:, :max_length]
|
211 |
+
|
212 |
+
if streamer is not None:
|
213 |
+
streamer.end()
|
214 |
+
|
215 |
+
if return_dict_in_generate:
|
216 |
+
if self.config.is_encoder_decoder:
|
217 |
+
return GenerateEncoderDecoderOutput(
|
218 |
+
sequences=input_ids,
|
219 |
+
scores=scores,
|
220 |
+
logits=raw_logits,
|
221 |
+
encoder_attentions=encoder_attentions,
|
222 |
+
encoder_hidden_states=encoder_hidden_states,
|
223 |
+
decoder_attentions=decoder_attentions,
|
224 |
+
cross_attentions=cross_attentions,
|
225 |
+
decoder_hidden_states=decoder_hidden_states,
|
226 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
227 |
+
)
|
228 |
+
else:
|
229 |
+
return GenerateDecoderOnlyOutput(
|
230 |
+
sequences=input_ids,
|
231 |
+
scores=scores,
|
232 |
+
logits=raw_logits,
|
233 |
+
attentions=decoder_attentions,
|
234 |
+
hidden_states=decoder_hidden_states,
|
235 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
236 |
+
)
|
237 |
+
else:
|
238 |
+
return generate_results[:, :, :(max_length - cur_len)]
|
239 |
+
|
240 |
+
def _update_model_kwargs_for_generation(
|
241 |
+
self,
|
242 |
+
outputs: ModelOutput,
|
243 |
+
model_kwargs: Dict[str, Any],
|
244 |
+
horizon_length: int = 1,
|
245 |
+
is_encoder_decoder: bool = False,
|
246 |
+
standardize_cache_format: bool = False,
|
247 |
+
) -> Dict[str, Any]:
|
248 |
+
# update past_key_values
|
249 |
+
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
|
250 |
+
outputs, standardize_cache_format=standardize_cache_format
|
251 |
+
)
|
252 |
+
if getattr(outputs, "state", None) is not None:
|
253 |
+
model_kwargs["state"] = outputs.state
|
254 |
+
|
255 |
+
# update token_type_ids with last value
|
256 |
+
if "token_type_ids" in model_kwargs:
|
257 |
+
token_type_ids = model_kwargs["token_type_ids"]
|
258 |
+
model_kwargs["token_type_ids"] = torch.cat(
|
259 |
+
[token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
|
260 |
+
|
261 |
+
if not is_encoder_decoder:
|
262 |
+
# update attention mask
|
263 |
+
if "attention_mask" in model_kwargs:
|
264 |
+
attention_mask = model_kwargs["attention_mask"]
|
265 |
+
model_kwargs["attention_mask"] = torch.cat(
|
266 |
+
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], horizon_length))], dim=-1
|
267 |
+
)
|
268 |
+
else:
|
269 |
+
# update decoder attention mask
|
270 |
+
if "decoder_attention_mask" in model_kwargs:
|
271 |
+
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
|
272 |
+
model_kwargs["decoder_attention_mask"] = torch.cat(
|
273 |
+
[decoder_attention_mask, decoder_attention_mask.new_ones(
|
274 |
+
(decoder_attention_mask.shape[0], horizon_length))],
|
275 |
+
dim=-1,
|
276 |
+
)
|
277 |
+
|
278 |
+
if "cache_position" in model_kwargs and model_kwargs["cache_position"] is not None:
|
279 |
+
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + horizon_length
|
280 |
+
|
281 |
+
return model_kwargs
|