---
license: apache-2.0
language:
- en
- hi
library_name: transformers
tags:
- text-to-speech
- tts
- hindi
- english
- llama
- audio
- speech
- india
- TensorBlock
- GGUF
datasets:
- proprietary
pipeline_tag: text-to-speech
co2_eq_emissions:
emissions: 0
source: Not specified
training_type: unknown
geographical_location: unknown
base_model: maya-research/Veena
---
[](https://tensorblock.co)
[](https://twitter.com/tensorblock_aoi)
[](https://discord.gg/Ej5NmeHFf2)
[](https://github.com/TensorBlock)
[](https://t.me/TensorBlock)
## maya-research/Veena - GGUF
This repo contains GGUF format model files for [maya-research/Veena](https://huggingface.co/maya-research/Veena).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5753](https://github.com/ggml-org/llama.cpp/commit/73e53dc834c0a2336cd104473af6897197b96277).
## Our projects
Forge |
|
An OpenAI-compatible multi-provider routing layer. |
🚀 Try it now! 🚀
|
Awesome MCP Servers |
TensorBlock Studio |
 |
 |
A comprehensive collection of Model Context Protocol (MCP) servers. |
A lightweight, open, and extensible multi-LLM interaction studio. |
👀 See what we built 👀
|
👀 See what we built 👀
|
## Prompt template
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Cutting Knowledge Date: December 2023
Today Date: 21 Jul 2025
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Veena-Q2_K.gguf](https://huggingface.co/tensorblock/maya-research_Veena-GGUF/blob/main/Veena-Q2_K.gguf) | Q2_K | 1.595 GB | smallest, significant quality loss - not recommended for most purposes |
| [Veena-Q3_K_S.gguf](https://huggingface.co/tensorblock/maya-research_Veena-GGUF/blob/main/Veena-Q3_K_S.gguf) | Q3_K_S | 1.823 GB | very small, high quality loss |
| [Veena-Q3_K_M.gguf](https://huggingface.co/tensorblock/maya-research_Veena-GGUF/blob/main/Veena-Q3_K_M.gguf) | Q3_K_M | 1.968 GB | very small, high quality loss |
| [Veena-Q3_K_L.gguf](https://huggingface.co/tensorblock/maya-research_Veena-GGUF/blob/main/Veena-Q3_K_L.gguf) | Q3_K_L | 2.096 GB | small, substantial quality loss |
| [Veena-Q4_0.gguf](https://huggingface.co/tensorblock/maya-research_Veena-GGUF/blob/main/Veena-Q4_0.gguf) | Q4_0 | 2.262 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Veena-Q4_K_S.gguf](https://huggingface.co/tensorblock/maya-research_Veena-GGUF/blob/main/Veena-Q4_K_S.gguf) | Q4_K_S | 2.273 GB | small, greater quality loss |
| [Veena-Q4_K_M.gguf](https://huggingface.co/tensorblock/maya-research_Veena-GGUF/blob/main/Veena-Q4_K_M.gguf) | Q4_K_M | 2.364 GB | medium, balanced quality - recommended |
| [Veena-Q5_0.gguf](https://huggingface.co/tensorblock/maya-research_Veena-GGUF/blob/main/Veena-Q5_0.gguf) | Q5_0 | 2.674 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Veena-Q5_K_S.gguf](https://huggingface.co/tensorblock/maya-research_Veena-GGUF/blob/main/Veena-Q5_K_S.gguf) | Q5_K_S | 2.674 GB | large, low quality loss - recommended |
| [Veena-Q5_K_M.gguf](https://huggingface.co/tensorblock/maya-research_Veena-GGUF/blob/main/Veena-Q5_K_M.gguf) | Q5_K_M | 2.727 GB | large, very low quality loss - recommended |
| [Veena-Q6_K.gguf](https://huggingface.co/tensorblock/maya-research_Veena-GGUF/blob/main/Veena-Q6_K.gguf) | Q6_K | 3.113 GB | very large, extremely low quality loss |
| [Veena-Q8_0.gguf](https://huggingface.co/tensorblock/maya-research_Veena-GGUF/blob/main/Veena-Q8_0.gguf) | Q8_0 | 4.029 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/maya-research_Veena-GGUF --include "Veena-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/maya-research_Veena-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```