--- library_name: transformers tags: - sentiment-analysis - text-classification - urdu - roman-urdu license: mit language: - ur base_model: - FacebookAI/xlm-roberta-base --- license: mit datasets: - custom metrics: - accuracy - f1 model-index: - name: XLM-RoBERTa Base Roman Urdu + Urdu Sentiment results: - task: type: text-classification name: Sentiment Analysis dataset: name: Custom Urdu + Roman Urdu Dataset type: text metrics: - name: Validation Loss type: loss value: 0.3735 - name: Training Loss type: loss value: 0.4441 --- # 🌍 XLM-RoBERTa Base — Urdu + Roman Urdu Sentiment Analysis This model is fine-tuned from [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) for **sentiment classification** in **Urdu** and **Roman Urdu**. It predicts **Positive, Negative, and Neutral** sentiments. --- ## 📊 Training Details - **Base Model:** xlm-roberta-base - **Dataset:** Custom Urdu + Roman Urdu dataset - **Classes:** Positive, Negative, Neutral - **Epochs:** 3 - **Training Loss:** 0.4441 - **Validation Loss (best):** 0.3735 --- ## 🚀 Usage ```python from transformers import pipeline classifier = pipeline("sentiment-analysis", model="tahamueed/xlm-roberta-roman-urdu-sentiment") print(classifier("yeh movie bohot zabardast hai!")) # [{'label': 'Positive', 'score': 0.92}]