import argparse import logging import torch from safetensors.torch import load_file from networks import lora from utils.safetensors_utils import mem_eff_save_file from hunyuan_model.models import load_transformer logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def parse_args(): parser = argparse.ArgumentParser(description="HunyuanVideo model merger script") parser.add_argument("--dit", type=str, required=True, help="DiT checkpoint path or directory") parser.add_argument("--dit_in_channels", type=int, default=16, help="input channels for DiT, default is 16, skyreels I2V is 32") parser.add_argument("--lora_weight", type=str, nargs="*", required=False, default=None, help="LoRA weight path") parser.add_argument("--lora_multiplier", type=float, nargs="*", default=[1.0], help="LoRA multiplier (can specify multiple values)") parser.add_argument("--save_merged_model", type=str, required=True, help="Path to save the merged model") parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", help="Device to use for merging") return parser.parse_args() def main(): args = parse_args() device = torch.device(args.device) logger.info(f"Using device: {device}") # Load DiT model logger.info(f"Loading DiT model from {args.dit}") transformer = load_transformer(args.dit, "torch", False, "cpu", torch.bfloat16, in_channels=args.dit_in_channels) transformer.eval() # Load LoRA weights and merge if args.lora_weight is not None and len(args.lora_weight) > 0: for i, lora_weight in enumerate(args.lora_weight): # Use the corresponding lora_multiplier or default to 1.0 if args.lora_multiplier is not None and len(args.lora_multiplier) > i: lora_multiplier = args.lora_multiplier[i] else: lora_multiplier = 1.0 logger.info(f"Loading LoRA weights from {lora_weight} with multiplier {lora_multiplier}") weights_sd = load_file(lora_weight) network = lora.create_arch_network_from_weights( lora_multiplier, weights_sd, unet=transformer, for_inference=True ) logger.info("Merging LoRA weights to DiT model") network.merge_to(None, transformer, weights_sd, device=device, non_blocking=True) logger.info("LoRA weights loaded") # Save the merged model logger.info(f"Saving merged model to {args.save_merged_model}") mem_eff_save_file(transformer.state_dict(), args.save_merged_model) logger.info("Merged model saved") if __name__ == "__main__": main()