step3 / configuration_step3.py
buyun's picture
Add files using upload-large-folder tool
4ad74b5 verified
raw
history blame
4.36 kB
from typing import Any, Optional, Union
from transformers.configuration_utils import PretrainedConfig
class Step3VisionEncoderConfig(PretrainedConfig):
model_type = "step3_vision_encoder"
def __init__(
self,
hidden_size=1792,
intermediate_size=3072,
output_hidden_size=4096,
num_hidden_layers=63,
num_attention_heads=16,
num_channels=3,
image_size=728,
patch_size=14,
hidden_act="quick_gelu",
layer_norm_eps=1e-5,
**kwargs,
):
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.output_hidden_size = output_hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
super().__init__(**kwargs)
class Step3TextConfig(PretrainedConfig):
model_type = "step3_text"
architectures = ["Step3TextForCausalLM"]
def __init__(
self,
hidden_size: int = 7168,
intermediate_size: int = 18432,
num_attention_heads: int = 64,
num_attention_groups: int = 1,
num_hidden_layers: int = 61,
max_seq_len: int = 65536,
vocab_size: int = 128815,
rms_norm_eps: float = 1e-5,
moe_intermediate_size: int = 5120,
moe_num_experts: int = 48,
moe_top_k: int = 3,
rope_theta: float = 500000,
rope_scaling: Optional[dict[str, Any]] = None,
max_position_embedding: int = 65536,
share_expert_dim: int = 5120,
share_q_dim: int = 2048,
head_dim: int = 256,
norm_expert_weight: bool = False,
moe_layers_enum: tuple[int] = (4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59),
**kwargs,
) -> None:
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_attention_heads = num_attention_heads
self.num_attention_groups = num_attention_groups
self.num_hidden_layers = num_hidden_layers
self.max_seq_len = max_seq_len
self.vocab_size = vocab_size
self.rms_norm_eps = rms_norm_eps
self.moe_intermediate_size = moe_intermediate_size
self.moe_num_experts = moe_num_experts
self.moe_top_k = moe_top_k
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.max_position_embedding = max_position_embedding
self.share_expert_dim = share_expert_dim
self.share_q_dim = share_q_dim
self.head_dim = head_dim
self.norm_expert_weight = norm_expert_weight
self.moe_layers_enum = moe_layers_enum
super().__init__(**kwargs)
class Step3VLConfig(PretrainedConfig):
model_type = "step3_vl"
def __init__(
self,
vision_config: Optional[Union[dict, Step3VisionEncoderConfig]] = None,
text_config: Optional[Union[dict, Step3TextConfig]] = None,
understand_projector_stride: int = 1,
projector_bias: bool = True,
image_token_id: int = 128001,
**kwargs,
) -> None:
if vision_config is None:
vision_config = Step3VisionEncoderConfig()
elif isinstance(vision_config, dict):
vision_config = Step3VisionEncoderConfig(**vision_config)
self.vision_config = vision_config
if text_config is None:
text_config = Step3TextConfig()
elif isinstance(text_config, dict):
text_config = Step3TextConfig(**text_config)
self.text_config = text_config
self.understand_projector_stride = understand_projector_stride
self.projector_bias = projector_bias
self.hidden_size = text_config.hidden_size
self.image_token_id = image_token_id
super().__init__(**kwargs)