|
from typing import Any, Optional, Union |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
|
|
|
|
class Step3VisionEncoderConfig(PretrainedConfig): |
|
model_type = "step3_vision_encoder" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=1792, |
|
intermediate_size=3072, |
|
output_hidden_size=4096, |
|
num_hidden_layers=63, |
|
num_attention_heads=16, |
|
num_channels=3, |
|
image_size=728, |
|
patch_size=14, |
|
hidden_act="quick_gelu", |
|
layer_norm_eps=1e-5, |
|
**kwargs, |
|
): |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.output_hidden_size = output_hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_channels = num_channels |
|
self.patch_size = patch_size |
|
self.image_size = image_size |
|
self.layer_norm_eps = layer_norm_eps |
|
self.hidden_act = hidden_act |
|
super().__init__(**kwargs) |
|
|
|
|
|
class Step3TextConfig(PretrainedConfig): |
|
model_type = "step3_text" |
|
architectures = ["Step3TextForCausalLM"] |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int = 7168, |
|
intermediate_size: int = 18432, |
|
num_attention_heads: int = 64, |
|
num_attention_groups: int = 1, |
|
num_hidden_layers: int = 61, |
|
max_seq_len: int = 65536, |
|
vocab_size: int = 128815, |
|
rms_norm_eps: float = 1e-5, |
|
moe_intermediate_size: int = 5120, |
|
moe_num_experts: int = 48, |
|
moe_top_k: int = 3, |
|
rope_theta: float = 500000, |
|
rope_scaling: Optional[dict[str, Any]] = None, |
|
max_position_embedding: int = 65536, |
|
share_expert_dim: int = 5120, |
|
share_q_dim: int = 2048, |
|
head_dim: int = 256, |
|
norm_expert_weight: bool = False, |
|
moe_layers_enum: tuple[int] = (4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, |
|
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
|
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, |
|
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, |
|
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, |
|
55, 56, 57, 58, 59), |
|
**kwargs, |
|
) -> None: |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_attention_heads = num_attention_heads |
|
self.num_attention_groups = num_attention_groups |
|
self.num_hidden_layers = num_hidden_layers |
|
self.max_seq_len = max_seq_len |
|
self.vocab_size = vocab_size |
|
self.rms_norm_eps = rms_norm_eps |
|
self.moe_intermediate_size = moe_intermediate_size |
|
self.moe_num_experts = moe_num_experts |
|
self.moe_top_k = moe_top_k |
|
self.rope_theta = rope_theta |
|
self.rope_scaling = rope_scaling |
|
self.max_position_embedding = max_position_embedding |
|
self.share_expert_dim = share_expert_dim |
|
self.share_q_dim = share_q_dim |
|
self.head_dim = head_dim |
|
self.norm_expert_weight = norm_expert_weight |
|
self.moe_layers_enum = moe_layers_enum |
|
|
|
super().__init__(**kwargs) |
|
|
|
|
|
class Step3VLConfig(PretrainedConfig): |
|
model_type = "step3_vl" |
|
|
|
def __init__( |
|
self, |
|
vision_config: Optional[Union[dict, Step3VisionEncoderConfig]] = None, |
|
text_config: Optional[Union[dict, Step3TextConfig]] = None, |
|
understand_projector_stride: int = 1, |
|
projector_bias: bool = True, |
|
image_token_id: int = 128001, |
|
**kwargs, |
|
) -> None: |
|
if vision_config is None: |
|
vision_config = Step3VisionEncoderConfig() |
|
elif isinstance(vision_config, dict): |
|
vision_config = Step3VisionEncoderConfig(**vision_config) |
|
self.vision_config = vision_config |
|
|
|
if text_config is None: |
|
text_config = Step3TextConfig() |
|
elif isinstance(text_config, dict): |
|
text_config = Step3TextConfig(**text_config) |
|
self.text_config = text_config |
|
|
|
self.understand_projector_stride = understand_projector_stride |
|
self.projector_bias = projector_bias |
|
self.hidden_size = text_config.hidden_size |
|
self.image_token_id = image_token_id |
|
|
|
super().__init__(**kwargs) |
|
|