File size: 23,935 Bytes
9ae9027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
2023-10-13 09:14:37,108 ----------------------------------------------------------------------------------------------------
2023-10-13 09:14:37,109 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-13 09:14:37,109 ----------------------------------------------------------------------------------------------------
2023-10-13 09:14:37,109 MultiCorpus: 1214 train + 266 dev + 251 test sentences
 - NER_HIPE_2022 Corpus: 1214 train + 266 dev + 251 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/en/with_doc_seperator
2023-10-13 09:14:37,109 ----------------------------------------------------------------------------------------------------
2023-10-13 09:14:37,109 Train:  1214 sentences
2023-10-13 09:14:37,109         (train_with_dev=False, train_with_test=False)
2023-10-13 09:14:37,109 ----------------------------------------------------------------------------------------------------
2023-10-13 09:14:37,109 Training Params:
2023-10-13 09:14:37,109  - learning_rate: "5e-05" 
2023-10-13 09:14:37,109  - mini_batch_size: "4"
2023-10-13 09:14:37,109  - max_epochs: "10"
2023-10-13 09:14:37,109  - shuffle: "True"
2023-10-13 09:14:37,109 ----------------------------------------------------------------------------------------------------
2023-10-13 09:14:37,109 Plugins:
2023-10-13 09:14:37,110  - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 09:14:37,110 ----------------------------------------------------------------------------------------------------
2023-10-13 09:14:37,110 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 09:14:37,110  - metric: "('micro avg', 'f1-score')"
2023-10-13 09:14:37,110 ----------------------------------------------------------------------------------------------------
2023-10-13 09:14:37,110 Computation:
2023-10-13 09:14:37,110  - compute on device: cuda:0
2023-10-13 09:14:37,110  - embedding storage: none
2023-10-13 09:14:37,110 ----------------------------------------------------------------------------------------------------
2023-10-13 09:14:37,110 Model training base path: "hmbench-ajmc/en-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-13 09:14:37,110 ----------------------------------------------------------------------------------------------------
2023-10-13 09:14:37,110 ----------------------------------------------------------------------------------------------------
2023-10-13 09:14:38,509 epoch 1 - iter 30/304 - loss 3.26533625 - time (sec): 1.40 - samples/sec: 2197.51 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:14:39,836 epoch 1 - iter 60/304 - loss 2.52396187 - time (sec): 2.72 - samples/sec: 2320.21 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:14:41,149 epoch 1 - iter 90/304 - loss 1.91225369 - time (sec): 4.04 - samples/sec: 2332.45 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:14:42,473 epoch 1 - iter 120/304 - loss 1.62800576 - time (sec): 5.36 - samples/sec: 2289.23 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:14:43,787 epoch 1 - iter 150/304 - loss 1.40639103 - time (sec): 6.68 - samples/sec: 2323.03 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:14:45,092 epoch 1 - iter 180/304 - loss 1.24597081 - time (sec): 7.98 - samples/sec: 2308.19 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:14:46,371 epoch 1 - iter 210/304 - loss 1.11152874 - time (sec): 9.26 - samples/sec: 2307.15 - lr: 0.000034 - momentum: 0.000000
2023-10-13 09:14:47,653 epoch 1 - iter 240/304 - loss 1.01243221 - time (sec): 10.54 - samples/sec: 2314.74 - lr: 0.000039 - momentum: 0.000000
2023-10-13 09:14:48,928 epoch 1 - iter 270/304 - loss 0.92964922 - time (sec): 11.82 - samples/sec: 2314.61 - lr: 0.000044 - momentum: 0.000000
2023-10-13 09:14:50,206 epoch 1 - iter 300/304 - loss 0.85739553 - time (sec): 13.10 - samples/sec: 2335.91 - lr: 0.000049 - momentum: 0.000000
2023-10-13 09:14:50,371 ----------------------------------------------------------------------------------------------------
2023-10-13 09:14:50,371 EPOCH 1 done: loss 0.8496 - lr: 0.000049
2023-10-13 09:14:51,338 DEV : loss 0.201650470495224 - f1-score (micro avg)  0.6265
2023-10-13 09:14:51,344 saving best model
2023-10-13 09:14:51,717 ----------------------------------------------------------------------------------------------------
2023-10-13 09:14:53,016 epoch 2 - iter 30/304 - loss 0.23233354 - time (sec): 1.30 - samples/sec: 2297.90 - lr: 0.000049 - momentum: 0.000000
2023-10-13 09:14:54,307 epoch 2 - iter 60/304 - loss 0.21378074 - time (sec): 2.59 - samples/sec: 2329.36 - lr: 0.000049 - momentum: 0.000000
2023-10-13 09:14:55,597 epoch 2 - iter 90/304 - loss 0.17494250 - time (sec): 3.88 - samples/sec: 2341.26 - lr: 0.000048 - momentum: 0.000000
2023-10-13 09:14:56,972 epoch 2 - iter 120/304 - loss 0.17535025 - time (sec): 5.25 - samples/sec: 2311.31 - lr: 0.000048 - momentum: 0.000000
2023-10-13 09:14:58,290 epoch 2 - iter 150/304 - loss 0.16287909 - time (sec): 6.57 - samples/sec: 2336.25 - lr: 0.000047 - momentum: 0.000000
2023-10-13 09:14:59,611 epoch 2 - iter 180/304 - loss 0.15875884 - time (sec): 7.89 - samples/sec: 2313.94 - lr: 0.000047 - momentum: 0.000000
2023-10-13 09:15:00,959 epoch 2 - iter 210/304 - loss 0.15246544 - time (sec): 9.24 - samples/sec: 2332.32 - lr: 0.000046 - momentum: 0.000000
2023-10-13 09:15:02,299 epoch 2 - iter 240/304 - loss 0.14503716 - time (sec): 10.58 - samples/sec: 2337.19 - lr: 0.000046 - momentum: 0.000000
2023-10-13 09:15:03,694 epoch 2 - iter 270/304 - loss 0.14762009 - time (sec): 11.97 - samples/sec: 2322.14 - lr: 0.000045 - momentum: 0.000000
2023-10-13 09:15:05,009 epoch 2 - iter 300/304 - loss 0.14227592 - time (sec): 13.29 - samples/sec: 2316.86 - lr: 0.000045 - momentum: 0.000000
2023-10-13 09:15:05,182 ----------------------------------------------------------------------------------------------------
2023-10-13 09:15:05,183 EPOCH 2 done: loss 0.1428 - lr: 0.000045
2023-10-13 09:15:06,187 DEV : loss 0.15195277333259583 - f1-score (micro avg)  0.8133
2023-10-13 09:15:06,194 saving best model
2023-10-13 09:15:06,662 ----------------------------------------------------------------------------------------------------
2023-10-13 09:15:08,063 epoch 3 - iter 30/304 - loss 0.05676444 - time (sec): 1.40 - samples/sec: 2173.93 - lr: 0.000044 - momentum: 0.000000
2023-10-13 09:15:09,462 epoch 3 - iter 60/304 - loss 0.06761027 - time (sec): 2.80 - samples/sec: 2176.58 - lr: 0.000043 - momentum: 0.000000
2023-10-13 09:15:10,961 epoch 3 - iter 90/304 - loss 0.06873990 - time (sec): 4.30 - samples/sec: 2184.72 - lr: 0.000043 - momentum: 0.000000
2023-10-13 09:15:12,476 epoch 3 - iter 120/304 - loss 0.06757685 - time (sec): 5.81 - samples/sec: 2118.45 - lr: 0.000042 - momentum: 0.000000
2023-10-13 09:15:13,823 epoch 3 - iter 150/304 - loss 0.06996653 - time (sec): 7.16 - samples/sec: 2139.39 - lr: 0.000042 - momentum: 0.000000
2023-10-13 09:15:15,154 epoch 3 - iter 180/304 - loss 0.07913479 - time (sec): 8.49 - samples/sec: 2141.81 - lr: 0.000041 - momentum: 0.000000
2023-10-13 09:15:16,481 epoch 3 - iter 210/304 - loss 0.08228924 - time (sec): 9.82 - samples/sec: 2174.93 - lr: 0.000041 - momentum: 0.000000
2023-10-13 09:15:17,803 epoch 3 - iter 240/304 - loss 0.08984783 - time (sec): 11.14 - samples/sec: 2186.18 - lr: 0.000040 - momentum: 0.000000
2023-10-13 09:15:19,160 epoch 3 - iter 270/304 - loss 0.08913348 - time (sec): 12.50 - samples/sec: 2221.62 - lr: 0.000040 - momentum: 0.000000
2023-10-13 09:15:20,497 epoch 3 - iter 300/304 - loss 0.09116194 - time (sec): 13.83 - samples/sec: 2208.35 - lr: 0.000039 - momentum: 0.000000
2023-10-13 09:15:20,681 ----------------------------------------------------------------------------------------------------
2023-10-13 09:15:20,681 EPOCH 3 done: loss 0.0903 - lr: 0.000039
2023-10-13 09:15:21,660 DEV : loss 0.15804360806941986 - f1-score (micro avg)  0.8216
2023-10-13 09:15:21,666 saving best model
2023-10-13 09:15:22,186 ----------------------------------------------------------------------------------------------------
2023-10-13 09:15:23,555 epoch 4 - iter 30/304 - loss 0.03604401 - time (sec): 1.37 - samples/sec: 2347.09 - lr: 0.000038 - momentum: 0.000000
2023-10-13 09:15:24,927 epoch 4 - iter 60/304 - loss 0.02876844 - time (sec): 2.74 - samples/sec: 2293.45 - lr: 0.000038 - momentum: 0.000000
2023-10-13 09:15:26,280 epoch 4 - iter 90/304 - loss 0.04362614 - time (sec): 4.09 - samples/sec: 2262.63 - lr: 0.000037 - momentum: 0.000000
2023-10-13 09:15:27,621 epoch 4 - iter 120/304 - loss 0.04360443 - time (sec): 5.43 - samples/sec: 2240.24 - lr: 0.000037 - momentum: 0.000000
2023-10-13 09:15:28,956 epoch 4 - iter 150/304 - loss 0.04145059 - time (sec): 6.77 - samples/sec: 2268.73 - lr: 0.000036 - momentum: 0.000000
2023-10-13 09:15:30,287 epoch 4 - iter 180/304 - loss 0.04960702 - time (sec): 8.10 - samples/sec: 2265.92 - lr: 0.000036 - momentum: 0.000000
2023-10-13 09:15:31,640 epoch 4 - iter 210/304 - loss 0.05541308 - time (sec): 9.45 - samples/sec: 2266.11 - lr: 0.000035 - momentum: 0.000000
2023-10-13 09:15:33,000 epoch 4 - iter 240/304 - loss 0.06095762 - time (sec): 10.81 - samples/sec: 2274.36 - lr: 0.000035 - momentum: 0.000000
2023-10-13 09:15:34,357 epoch 4 - iter 270/304 - loss 0.05985542 - time (sec): 12.17 - samples/sec: 2275.80 - lr: 0.000034 - momentum: 0.000000
2023-10-13 09:15:35,691 epoch 4 - iter 300/304 - loss 0.06489252 - time (sec): 13.50 - samples/sec: 2265.80 - lr: 0.000033 - momentum: 0.000000
2023-10-13 09:15:35,870 ----------------------------------------------------------------------------------------------------
2023-10-13 09:15:35,870 EPOCH 4 done: loss 0.0641 - lr: 0.000033
2023-10-13 09:15:37,238 DEV : loss 0.2069637030363083 - f1-score (micro avg)  0.8019
2023-10-13 09:15:37,247 ----------------------------------------------------------------------------------------------------
2023-10-13 09:15:38,839 epoch 5 - iter 30/304 - loss 0.04191437 - time (sec): 1.59 - samples/sec: 1998.89 - lr: 0.000033 - momentum: 0.000000
2023-10-13 09:15:40,396 epoch 5 - iter 60/304 - loss 0.03204806 - time (sec): 3.15 - samples/sec: 2031.74 - lr: 0.000032 - momentum: 0.000000
2023-10-13 09:15:41,713 epoch 5 - iter 90/304 - loss 0.03275413 - time (sec): 4.46 - samples/sec: 2113.80 - lr: 0.000032 - momentum: 0.000000
2023-10-13 09:15:42,991 epoch 5 - iter 120/304 - loss 0.04056152 - time (sec): 5.74 - samples/sec: 2171.53 - lr: 0.000031 - momentum: 0.000000
2023-10-13 09:15:44,285 epoch 5 - iter 150/304 - loss 0.05389375 - time (sec): 7.04 - samples/sec: 2205.77 - lr: 0.000031 - momentum: 0.000000
2023-10-13 09:15:45,574 epoch 5 - iter 180/304 - loss 0.05150614 - time (sec): 8.33 - samples/sec: 2232.06 - lr: 0.000030 - momentum: 0.000000
2023-10-13 09:15:46,848 epoch 5 - iter 210/304 - loss 0.05150225 - time (sec): 9.60 - samples/sec: 2242.98 - lr: 0.000030 - momentum: 0.000000
2023-10-13 09:15:48,151 epoch 5 - iter 240/304 - loss 0.05217181 - time (sec): 10.90 - samples/sec: 2259.05 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:15:49,483 epoch 5 - iter 270/304 - loss 0.05447614 - time (sec): 12.23 - samples/sec: 2256.83 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:15:50,806 epoch 5 - iter 300/304 - loss 0.05138325 - time (sec): 13.56 - samples/sec: 2261.82 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:15:50,979 ----------------------------------------------------------------------------------------------------
2023-10-13 09:15:50,979 EPOCH 5 done: loss 0.0516 - lr: 0.000028
2023-10-13 09:15:51,943 DEV : loss 0.2098654955625534 - f1-score (micro avg)  0.8198
2023-10-13 09:15:51,948 ----------------------------------------------------------------------------------------------------
2023-10-13 09:15:53,206 epoch 6 - iter 30/304 - loss 0.05555524 - time (sec): 1.26 - samples/sec: 2228.63 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:15:54,494 epoch 6 - iter 60/304 - loss 0.05040596 - time (sec): 2.54 - samples/sec: 2381.04 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:15:55,812 epoch 6 - iter 90/304 - loss 0.03898913 - time (sec): 3.86 - samples/sec: 2358.92 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:15:57,152 epoch 6 - iter 120/304 - loss 0.03712618 - time (sec): 5.20 - samples/sec: 2343.91 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:15:58,457 epoch 6 - iter 150/304 - loss 0.03224463 - time (sec): 6.51 - samples/sec: 2301.40 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:15:59,782 epoch 6 - iter 180/304 - loss 0.03203376 - time (sec): 7.83 - samples/sec: 2309.02 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:16:01,115 epoch 6 - iter 210/304 - loss 0.03430597 - time (sec): 9.17 - samples/sec: 2320.87 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:16:02,446 epoch 6 - iter 240/304 - loss 0.03929362 - time (sec): 10.50 - samples/sec: 2317.97 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:16:03,775 epoch 6 - iter 270/304 - loss 0.03687403 - time (sec): 11.83 - samples/sec: 2311.64 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:16:05,087 epoch 6 - iter 300/304 - loss 0.03657846 - time (sec): 13.14 - samples/sec: 2331.31 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:16:05,266 ----------------------------------------------------------------------------------------------------
2023-10-13 09:16:05,267 EPOCH 6 done: loss 0.0368 - lr: 0.000022
2023-10-13 09:16:06,246 DEV : loss 0.22034451365470886 - f1-score (micro avg)  0.8221
2023-10-13 09:16:06,252 saving best model
2023-10-13 09:16:06,730 ----------------------------------------------------------------------------------------------------
2023-10-13 09:16:08,099 epoch 7 - iter 30/304 - loss 0.02239979 - time (sec): 1.36 - samples/sec: 2260.37 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:16:09,399 epoch 7 - iter 60/304 - loss 0.03115877 - time (sec): 2.66 - samples/sec: 2298.72 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:16:10,685 epoch 7 - iter 90/304 - loss 0.03771206 - time (sec): 3.95 - samples/sec: 2299.27 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:16:12,011 epoch 7 - iter 120/304 - loss 0.03515986 - time (sec): 5.28 - samples/sec: 2373.43 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:16:13,437 epoch 7 - iter 150/304 - loss 0.03089837 - time (sec): 6.70 - samples/sec: 2309.39 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:16:14,917 epoch 7 - iter 180/304 - loss 0.02684988 - time (sec): 8.18 - samples/sec: 2276.56 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:16:16,275 epoch 7 - iter 210/304 - loss 0.02627693 - time (sec): 9.54 - samples/sec: 2278.53 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:16:17,630 epoch 7 - iter 240/304 - loss 0.03001494 - time (sec): 10.90 - samples/sec: 2303.15 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:16:18,969 epoch 7 - iter 270/304 - loss 0.02826276 - time (sec): 12.23 - samples/sec: 2273.72 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:16:20,296 epoch 7 - iter 300/304 - loss 0.02865291 - time (sec): 13.56 - samples/sec: 2264.87 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:16:20,474 ----------------------------------------------------------------------------------------------------
2023-10-13 09:16:20,474 EPOCH 7 done: loss 0.0288 - lr: 0.000017
2023-10-13 09:16:21,466 DEV : loss 0.23426471650600433 - f1-score (micro avg)  0.8168
2023-10-13 09:16:21,473 ----------------------------------------------------------------------------------------------------
2023-10-13 09:16:22,877 epoch 8 - iter 30/304 - loss 0.02224755 - time (sec): 1.40 - samples/sec: 2401.89 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:16:24,263 epoch 8 - iter 60/304 - loss 0.01525236 - time (sec): 2.79 - samples/sec: 2263.66 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:16:25,635 epoch 8 - iter 90/304 - loss 0.02329187 - time (sec): 4.16 - samples/sec: 2258.57 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:16:26,976 epoch 8 - iter 120/304 - loss 0.02334889 - time (sec): 5.50 - samples/sec: 2257.54 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:16:28,374 epoch 8 - iter 150/304 - loss 0.02386948 - time (sec): 6.90 - samples/sec: 2262.04 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:16:29,758 epoch 8 - iter 180/304 - loss 0.02048026 - time (sec): 8.28 - samples/sec: 2259.77 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:16:31,110 epoch 8 - iter 210/304 - loss 0.02097907 - time (sec): 9.64 - samples/sec: 2249.01 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:16:32,423 epoch 8 - iter 240/304 - loss 0.02088416 - time (sec): 10.95 - samples/sec: 2260.29 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:16:33,741 epoch 8 - iter 270/304 - loss 0.02000901 - time (sec): 12.27 - samples/sec: 2255.30 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:16:35,084 epoch 8 - iter 300/304 - loss 0.02079615 - time (sec): 13.61 - samples/sec: 2248.16 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:16:35,257 ----------------------------------------------------------------------------------------------------
2023-10-13 09:16:35,257 EPOCH 8 done: loss 0.0205 - lr: 0.000011
2023-10-13 09:16:36,170 DEV : loss 0.2336961030960083 - f1-score (micro avg)  0.8088
2023-10-13 09:16:36,176 ----------------------------------------------------------------------------------------------------
2023-10-13 09:16:37,480 epoch 9 - iter 30/304 - loss 0.03185151 - time (sec): 1.30 - samples/sec: 2118.20 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:16:38,805 epoch 9 - iter 60/304 - loss 0.01941022 - time (sec): 2.63 - samples/sec: 2248.26 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:16:40,114 epoch 9 - iter 90/304 - loss 0.02418827 - time (sec): 3.94 - samples/sec: 2338.22 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:16:41,423 epoch 9 - iter 120/304 - loss 0.02236864 - time (sec): 5.25 - samples/sec: 2360.29 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:16:42,747 epoch 9 - iter 150/304 - loss 0.01936117 - time (sec): 6.57 - samples/sec: 2338.84 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:16:44,042 epoch 9 - iter 180/304 - loss 0.02011720 - time (sec): 7.86 - samples/sec: 2336.05 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:16:45,349 epoch 9 - iter 210/304 - loss 0.01822278 - time (sec): 9.17 - samples/sec: 2312.70 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:16:46,676 epoch 9 - iter 240/304 - loss 0.01633974 - time (sec): 10.50 - samples/sec: 2343.24 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:16:47,986 epoch 9 - iter 270/304 - loss 0.01538783 - time (sec): 11.81 - samples/sec: 2337.67 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:16:49,306 epoch 9 - iter 300/304 - loss 0.01441047 - time (sec): 13.13 - samples/sec: 2332.01 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:16:49,476 ----------------------------------------------------------------------------------------------------
2023-10-13 09:16:49,476 EPOCH 9 done: loss 0.0142 - lr: 0.000006
2023-10-13 09:16:50,451 DEV : loss 0.23067596554756165 - f1-score (micro avg)  0.8341
2023-10-13 09:16:50,457 saving best model
2023-10-13 09:16:50,946 ----------------------------------------------------------------------------------------------------
2023-10-13 09:16:52,223 epoch 10 - iter 30/304 - loss 0.00042546 - time (sec): 1.28 - samples/sec: 2287.84 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:16:53,505 epoch 10 - iter 60/304 - loss 0.00653303 - time (sec): 2.56 - samples/sec: 2398.84 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:16:54,777 epoch 10 - iter 90/304 - loss 0.00676046 - time (sec): 3.83 - samples/sec: 2481.73 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:16:56,053 epoch 10 - iter 120/304 - loss 0.01082980 - time (sec): 5.11 - samples/sec: 2451.59 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:16:57,352 epoch 10 - iter 150/304 - loss 0.01160425 - time (sec): 6.40 - samples/sec: 2397.63 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:16:58,713 epoch 10 - iter 180/304 - loss 0.00964747 - time (sec): 7.76 - samples/sec: 2406.44 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:17:00,034 epoch 10 - iter 210/304 - loss 0.01238947 - time (sec): 9.09 - samples/sec: 2398.10 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:17:01,355 epoch 10 - iter 240/304 - loss 0.01215384 - time (sec): 10.41 - samples/sec: 2363.73 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:17:02,681 epoch 10 - iter 270/304 - loss 0.01161439 - time (sec): 11.73 - samples/sec: 2360.65 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:17:04,067 epoch 10 - iter 300/304 - loss 0.01123309 - time (sec): 13.12 - samples/sec: 2346.33 - lr: 0.000000 - momentum: 0.000000
2023-10-13 09:17:04,242 ----------------------------------------------------------------------------------------------------
2023-10-13 09:17:04,242 EPOCH 10 done: loss 0.0112 - lr: 0.000000
2023-10-13 09:17:05,216 DEV : loss 0.22761297225952148 - f1-score (micro avg)  0.8253
2023-10-13 09:17:05,622 ----------------------------------------------------------------------------------------------------
2023-10-13 09:17:05,624 Loading model from best epoch ...
2023-10-13 09:17:07,074 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-date, B-date, E-date, I-date, S-object, B-object, E-object, I-object
2023-10-13 09:17:08,140 
Results:
- F-score (micro) 0.7847
- F-score (macro) 0.6101
- Accuracy 0.6556

By class:
              precision    recall  f1-score   support

       scope     0.7278    0.8146    0.7687       151
        pers     0.7607    0.9271    0.8357        96
        work     0.7034    0.8737    0.7793        95
         loc     0.6667    0.6667    0.6667         3
        date     0.0000    0.0000    0.0000         3

   micro avg     0.7262    0.8534    0.7847       348
   macro avg     0.5717    0.6564    0.6101       348
weighted avg     0.7234    0.8534    0.7826       348

2023-10-13 09:17:08,140 ----------------------------------------------------------------------------------------------------