File size: 24,067 Bytes
eb75f00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
2023-10-13 09:21:50,026 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:50,027 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-13 09:21:50,027 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:50,028 MultiCorpus: 1214 train + 266 dev + 251 test sentences
 - NER_HIPE_2022 Corpus: 1214 train + 266 dev + 251 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/en/with_doc_seperator
2023-10-13 09:21:50,028 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:50,028 Train:  1214 sentences
2023-10-13 09:21:50,028         (train_with_dev=False, train_with_test=False)
2023-10-13 09:21:50,028 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:50,028 Training Params:
2023-10-13 09:21:50,028  - learning_rate: "3e-05" 
2023-10-13 09:21:50,028  - mini_batch_size: "4"
2023-10-13 09:21:50,028  - max_epochs: "10"
2023-10-13 09:21:50,028  - shuffle: "True"
2023-10-13 09:21:50,028 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:50,028 Plugins:
2023-10-13 09:21:50,028  - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 09:21:50,028 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:50,028 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 09:21:50,028  - metric: "('micro avg', 'f1-score')"
2023-10-13 09:21:50,028 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:50,028 Computation:
2023-10-13 09:21:50,028  - compute on device: cuda:0
2023-10-13 09:21:50,028  - embedding storage: none
2023-10-13 09:21:50,028 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:50,028 Model training base path: "hmbench-ajmc/en-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
2023-10-13 09:21:50,028 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:50,028 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:51,347 epoch 1 - iter 30/304 - loss 3.14643067 - time (sec): 1.32 - samples/sec: 2394.58 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:21:52,663 epoch 1 - iter 60/304 - loss 2.61196539 - time (sec): 2.63 - samples/sec: 2320.36 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:21:53,972 epoch 1 - iter 90/304 - loss 2.01396081 - time (sec): 3.94 - samples/sec: 2304.68 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:21:55,299 epoch 1 - iter 120/304 - loss 1.67837668 - time (sec): 5.27 - samples/sec: 2331.79 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:21:56,627 epoch 1 - iter 150/304 - loss 1.44538259 - time (sec): 6.60 - samples/sec: 2344.67 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:21:57,919 epoch 1 - iter 180/304 - loss 1.26593014 - time (sec): 7.89 - samples/sec: 2345.25 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:21:59,247 epoch 1 - iter 210/304 - loss 1.13260232 - time (sec): 9.22 - samples/sec: 2379.81 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:22:00,544 epoch 1 - iter 240/304 - loss 1.05180921 - time (sec): 10.51 - samples/sec: 2340.22 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:22:01,843 epoch 1 - iter 270/304 - loss 0.96892270 - time (sec): 11.81 - samples/sec: 2327.55 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:22:03,180 epoch 1 - iter 300/304 - loss 0.89480556 - time (sec): 13.15 - samples/sec: 2333.31 - lr: 0.000030 - momentum: 0.000000
2023-10-13 09:22:03,354 ----------------------------------------------------------------------------------------------------
2023-10-13 09:22:03,355 EPOCH 1 done: loss 0.8885 - lr: 0.000030
2023-10-13 09:22:04,289 DEV : loss 0.2071554958820343 - f1-score (micro avg)  0.626
2023-10-13 09:22:04,295 saving best model
2023-10-13 09:22:04,643 ----------------------------------------------------------------------------------------------------
2023-10-13 09:22:05,962 epoch 2 - iter 30/304 - loss 0.21165856 - time (sec): 1.32 - samples/sec: 2085.34 - lr: 0.000030 - momentum: 0.000000
2023-10-13 09:22:07,290 epoch 2 - iter 60/304 - loss 0.19167315 - time (sec): 2.65 - samples/sec: 2177.23 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:22:08,603 epoch 2 - iter 90/304 - loss 0.19618877 - time (sec): 3.96 - samples/sec: 2182.10 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:22:09,912 epoch 2 - iter 120/304 - loss 0.18385430 - time (sec): 5.27 - samples/sec: 2263.49 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:22:11,252 epoch 2 - iter 150/304 - loss 0.17307524 - time (sec): 6.61 - samples/sec: 2299.07 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:22:12,562 epoch 2 - iter 180/304 - loss 0.16495184 - time (sec): 7.92 - samples/sec: 2298.84 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:22:13,913 epoch 2 - iter 210/304 - loss 0.16339515 - time (sec): 9.27 - samples/sec: 2311.24 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:22:15,244 epoch 2 - iter 240/304 - loss 0.15462700 - time (sec): 10.60 - samples/sec: 2298.68 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:22:16,566 epoch 2 - iter 270/304 - loss 0.14853881 - time (sec): 11.92 - samples/sec: 2313.61 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:22:17,894 epoch 2 - iter 300/304 - loss 0.15172585 - time (sec): 13.25 - samples/sec: 2316.42 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:22:18,065 ----------------------------------------------------------------------------------------------------
2023-10-13 09:22:18,065 EPOCH 2 done: loss 0.1509 - lr: 0.000027
2023-10-13 09:22:19,099 DEV : loss 0.13263030350208282 - f1-score (micro avg)  0.8052
2023-10-13 09:22:19,110 saving best model
2023-10-13 09:22:19,589 ----------------------------------------------------------------------------------------------------
2023-10-13 09:22:21,103 epoch 3 - iter 30/304 - loss 0.07128775 - time (sec): 1.51 - samples/sec: 1987.88 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:22:22,663 epoch 3 - iter 60/304 - loss 0.07924825 - time (sec): 3.07 - samples/sec: 1930.84 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:22:24,163 epoch 3 - iter 90/304 - loss 0.07419531 - time (sec): 4.57 - samples/sec: 1943.48 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:22:25,691 epoch 3 - iter 120/304 - loss 0.07614692 - time (sec): 6.10 - samples/sec: 1950.93 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:22:27,183 epoch 3 - iter 150/304 - loss 0.08194671 - time (sec): 7.59 - samples/sec: 1997.01 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:22:28,586 epoch 3 - iter 180/304 - loss 0.08323121 - time (sec): 8.99 - samples/sec: 2047.47 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:22:29,968 epoch 3 - iter 210/304 - loss 0.08266949 - time (sec): 10.37 - samples/sec: 2042.19 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:22:31,388 epoch 3 - iter 240/304 - loss 0.08267050 - time (sec): 11.79 - samples/sec: 2059.00 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:22:32,767 epoch 3 - iter 270/304 - loss 0.08498155 - time (sec): 13.17 - samples/sec: 2084.52 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:22:34,083 epoch 3 - iter 300/304 - loss 0.08168233 - time (sec): 14.49 - samples/sec: 2113.70 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:22:34,256 ----------------------------------------------------------------------------------------------------
2023-10-13 09:22:34,257 EPOCH 3 done: loss 0.0811 - lr: 0.000023
2023-10-13 09:22:35,237 DEV : loss 0.1455976665019989 - f1-score (micro avg)  0.8345
2023-10-13 09:22:35,246 saving best model
2023-10-13 09:22:35,742 ----------------------------------------------------------------------------------------------------
2023-10-13 09:22:37,314 epoch 4 - iter 30/304 - loss 0.06087788 - time (sec): 1.57 - samples/sec: 1853.33 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:22:38,837 epoch 4 - iter 60/304 - loss 0.04317911 - time (sec): 3.09 - samples/sec: 1902.45 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:22:40,372 epoch 4 - iter 90/304 - loss 0.05751885 - time (sec): 4.63 - samples/sec: 1943.09 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:22:41,690 epoch 4 - iter 120/304 - loss 0.06401069 - time (sec): 5.95 - samples/sec: 2064.48 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:22:43,014 epoch 4 - iter 150/304 - loss 0.06280668 - time (sec): 7.27 - samples/sec: 2103.03 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:22:44,311 epoch 4 - iter 180/304 - loss 0.05607160 - time (sec): 8.57 - samples/sec: 2118.71 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:22:45,613 epoch 4 - iter 210/304 - loss 0.05268029 - time (sec): 9.87 - samples/sec: 2158.42 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:22:46,916 epoch 4 - iter 240/304 - loss 0.05793622 - time (sec): 11.17 - samples/sec: 2187.86 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:22:48,214 epoch 4 - iter 270/304 - loss 0.05823567 - time (sec): 12.47 - samples/sec: 2197.64 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:22:49,522 epoch 4 - iter 300/304 - loss 0.05766621 - time (sec): 13.78 - samples/sec: 2217.65 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:22:49,700 ----------------------------------------------------------------------------------------------------
2023-10-13 09:22:49,700 EPOCH 4 done: loss 0.0590 - lr: 0.000020
2023-10-13 09:22:50,623 DEV : loss 0.17554476857185364 - f1-score (micro avg)  0.8324
2023-10-13 09:22:50,630 ----------------------------------------------------------------------------------------------------
2023-10-13 09:22:51,944 epoch 5 - iter 30/304 - loss 0.07644765 - time (sec): 1.31 - samples/sec: 2338.51 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:22:53,253 epoch 5 - iter 60/304 - loss 0.05147929 - time (sec): 2.62 - samples/sec: 2405.54 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:22:54,567 epoch 5 - iter 90/304 - loss 0.04674362 - time (sec): 3.94 - samples/sec: 2330.04 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:22:55,839 epoch 5 - iter 120/304 - loss 0.04940268 - time (sec): 5.21 - samples/sec: 2349.29 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:22:57,125 epoch 5 - iter 150/304 - loss 0.04607070 - time (sec): 6.49 - samples/sec: 2377.87 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:22:58,443 epoch 5 - iter 180/304 - loss 0.04705798 - time (sec): 7.81 - samples/sec: 2370.34 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:22:59,726 epoch 5 - iter 210/304 - loss 0.05046955 - time (sec): 9.09 - samples/sec: 2377.87 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:23:01,069 epoch 5 - iter 240/304 - loss 0.04876882 - time (sec): 10.44 - samples/sec: 2374.22 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:23:02,391 epoch 5 - iter 270/304 - loss 0.04648397 - time (sec): 11.76 - samples/sec: 2340.06 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:23:03,687 epoch 5 - iter 300/304 - loss 0.04716439 - time (sec): 13.06 - samples/sec: 2349.29 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:23:03,855 ----------------------------------------------------------------------------------------------------
2023-10-13 09:23:03,855 EPOCH 5 done: loss 0.0479 - lr: 0.000017
2023-10-13 09:23:04,819 DEV : loss 0.17705786228179932 - f1-score (micro avg)  0.8363
2023-10-13 09:23:04,826 saving best model
2023-10-13 09:23:05,524 ----------------------------------------------------------------------------------------------------
2023-10-13 09:23:06,887 epoch 6 - iter 30/304 - loss 0.03136870 - time (sec): 1.36 - samples/sec: 2645.61 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:23:08,204 epoch 6 - iter 60/304 - loss 0.02093786 - time (sec): 2.67 - samples/sec: 2412.14 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:23:09,529 epoch 6 - iter 90/304 - loss 0.02007314 - time (sec): 4.00 - samples/sec: 2349.37 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:23:10,866 epoch 6 - iter 120/304 - loss 0.01858451 - time (sec): 5.34 - samples/sec: 2355.51 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:23:12,143 epoch 6 - iter 150/304 - loss 0.02451086 - time (sec): 6.61 - samples/sec: 2346.99 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:23:13,539 epoch 6 - iter 180/304 - loss 0.02743372 - time (sec): 8.01 - samples/sec: 2323.17 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:23:15,024 epoch 6 - iter 210/304 - loss 0.03072947 - time (sec): 9.49 - samples/sec: 2280.94 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:23:16,483 epoch 6 - iter 240/304 - loss 0.03654572 - time (sec): 10.95 - samples/sec: 2253.19 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:23:17,907 epoch 6 - iter 270/304 - loss 0.04018440 - time (sec): 12.38 - samples/sec: 2245.72 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:23:19,197 epoch 6 - iter 300/304 - loss 0.03728501 - time (sec): 13.67 - samples/sec: 2238.49 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:23:19,361 ----------------------------------------------------------------------------------------------------
2023-10-13 09:23:19,362 EPOCH 6 done: loss 0.0370 - lr: 0.000013
2023-10-13 09:23:20,415 DEV : loss 0.19094179570674896 - f1-score (micro avg)  0.8287
2023-10-13 09:23:20,427 ----------------------------------------------------------------------------------------------------
2023-10-13 09:23:22,066 epoch 7 - iter 30/304 - loss 0.01848195 - time (sec): 1.64 - samples/sec: 1834.21 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:23:23,748 epoch 7 - iter 60/304 - loss 0.02331449 - time (sec): 3.32 - samples/sec: 1805.55 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:23:25,094 epoch 7 - iter 90/304 - loss 0.02308868 - time (sec): 4.67 - samples/sec: 1936.04 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:23:26,460 epoch 7 - iter 120/304 - loss 0.02624437 - time (sec): 6.03 - samples/sec: 2001.63 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:23:27,835 epoch 7 - iter 150/304 - loss 0.02699705 - time (sec): 7.41 - samples/sec: 2041.57 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:23:29,196 epoch 7 - iter 180/304 - loss 0.02687898 - time (sec): 8.77 - samples/sec: 2063.46 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:23:30,504 epoch 7 - iter 210/304 - loss 0.02865865 - time (sec): 10.07 - samples/sec: 2096.03 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:23:31,815 epoch 7 - iter 240/304 - loss 0.02588328 - time (sec): 11.39 - samples/sec: 2134.69 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:23:33,166 epoch 7 - iter 270/304 - loss 0.02512052 - time (sec): 12.74 - samples/sec: 2170.84 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:23:34,468 epoch 7 - iter 300/304 - loss 0.02644548 - time (sec): 14.04 - samples/sec: 2186.89 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:23:34,632 ----------------------------------------------------------------------------------------------------
2023-10-13 09:23:34,632 EPOCH 7 done: loss 0.0275 - lr: 0.000010
2023-10-13 09:23:35,685 DEV : loss 0.18863379955291748 - f1-score (micro avg)  0.8395
2023-10-13 09:23:35,694 saving best model
2023-10-13 09:23:36,158 ----------------------------------------------------------------------------------------------------
2023-10-13 09:23:37,648 epoch 8 - iter 30/304 - loss 0.01643243 - time (sec): 1.48 - samples/sec: 2065.29 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:23:39,041 epoch 8 - iter 60/304 - loss 0.03486728 - time (sec): 2.88 - samples/sec: 2260.90 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:23:40,513 epoch 8 - iter 90/304 - loss 0.03618987 - time (sec): 4.35 - samples/sec: 2160.67 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:23:41,996 epoch 8 - iter 120/304 - loss 0.02810914 - time (sec): 5.83 - samples/sec: 2101.68 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:23:43,503 epoch 8 - iter 150/304 - loss 0.02495396 - time (sec): 7.34 - samples/sec: 2068.28 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:23:44,887 epoch 8 - iter 180/304 - loss 0.02475730 - time (sec): 8.72 - samples/sec: 2105.50 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:23:46,252 epoch 8 - iter 210/304 - loss 0.02227638 - time (sec): 10.09 - samples/sec: 2115.65 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:23:47,603 epoch 8 - iter 240/304 - loss 0.02349592 - time (sec): 11.44 - samples/sec: 2134.70 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:23:48,966 epoch 8 - iter 270/304 - loss 0.02182563 - time (sec): 12.80 - samples/sec: 2151.68 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:23:50,327 epoch 8 - iter 300/304 - loss 0.01983000 - time (sec): 14.16 - samples/sec: 2160.03 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:23:50,502 ----------------------------------------------------------------------------------------------------
2023-10-13 09:23:50,503 EPOCH 8 done: loss 0.0196 - lr: 0.000007
2023-10-13 09:23:51,493 DEV : loss 0.19373896718025208 - f1-score (micro avg)  0.8424
2023-10-13 09:23:51,501 saving best model
2023-10-13 09:23:51,981 ----------------------------------------------------------------------------------------------------
2023-10-13 09:23:53,527 epoch 9 - iter 30/304 - loss 0.00606087 - time (sec): 1.54 - samples/sec: 1888.65 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:23:55,124 epoch 9 - iter 60/304 - loss 0.00478110 - time (sec): 3.14 - samples/sec: 1942.03 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:23:56,705 epoch 9 - iter 90/304 - loss 0.01683836 - time (sec): 4.72 - samples/sec: 1944.27 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:23:58,287 epoch 9 - iter 120/304 - loss 0.01382272 - time (sec): 6.30 - samples/sec: 1924.42 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:23:59,864 epoch 9 - iter 150/304 - loss 0.01245018 - time (sec): 7.88 - samples/sec: 1925.04 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:24:01,471 epoch 9 - iter 180/304 - loss 0.01679658 - time (sec): 9.49 - samples/sec: 1954.12 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:24:03,084 epoch 9 - iter 210/304 - loss 0.01442450 - time (sec): 11.10 - samples/sec: 1962.68 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:24:04,665 epoch 9 - iter 240/304 - loss 0.01529025 - time (sec): 12.68 - samples/sec: 1959.05 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:24:06,219 epoch 9 - iter 270/304 - loss 0.01588725 - time (sec): 14.24 - samples/sec: 1953.25 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:24:07,748 epoch 9 - iter 300/304 - loss 0.01546630 - time (sec): 15.76 - samples/sec: 1946.35 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:24:07,947 ----------------------------------------------------------------------------------------------------
2023-10-13 09:24:07,947 EPOCH 9 done: loss 0.0154 - lr: 0.000003
2023-10-13 09:24:08,899 DEV : loss 0.19748911261558533 - f1-score (micro avg)  0.8431
2023-10-13 09:24:08,908 saving best model
2023-10-13 09:24:09,414 ----------------------------------------------------------------------------------------------------
2023-10-13 09:24:10,978 epoch 10 - iter 30/304 - loss 0.00023281 - time (sec): 1.56 - samples/sec: 1924.70 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:24:12,582 epoch 10 - iter 60/304 - loss 0.01793737 - time (sec): 3.17 - samples/sec: 1894.23 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:24:14,159 epoch 10 - iter 90/304 - loss 0.01321813 - time (sec): 4.74 - samples/sec: 1953.07 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:24:15,739 epoch 10 - iter 120/304 - loss 0.01092258 - time (sec): 6.32 - samples/sec: 1941.40 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:24:17,285 epoch 10 - iter 150/304 - loss 0.00978840 - time (sec): 7.87 - samples/sec: 1936.01 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:24:18,836 epoch 10 - iter 180/304 - loss 0.01050595 - time (sec): 9.42 - samples/sec: 1936.97 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:24:20,424 epoch 10 - iter 210/304 - loss 0.01376533 - time (sec): 11.01 - samples/sec: 1935.12 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:24:21,997 epoch 10 - iter 240/304 - loss 0.01263724 - time (sec): 12.58 - samples/sec: 1952.40 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:24:23,529 epoch 10 - iter 270/304 - loss 0.01126673 - time (sec): 14.11 - samples/sec: 1957.66 - lr: 0.000000 - momentum: 0.000000
2023-10-13 09:24:25,035 epoch 10 - iter 300/304 - loss 0.01271255 - time (sec): 15.62 - samples/sec: 1963.63 - lr: 0.000000 - momentum: 0.000000
2023-10-13 09:24:25,242 ----------------------------------------------------------------------------------------------------
2023-10-13 09:24:25,242 EPOCH 10 done: loss 0.0126 - lr: 0.000000
2023-10-13 09:24:26,200 DEV : loss 0.19666777551174164 - f1-score (micro avg)  0.8487
2023-10-13 09:24:26,207 saving best model
2023-10-13 09:24:27,064 ----------------------------------------------------------------------------------------------------
2023-10-13 09:24:27,065 Loading model from best epoch ...
2023-10-13 09:24:28,683 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-date, B-date, E-date, I-date, S-object, B-object, E-object, I-object
2023-10-13 09:24:29,772 
Results:
- F-score (micro) 0.786
- F-score (macro) 0.6385
- Accuracy 0.6532

By class:
              precision    recall  f1-score   support

       scope     0.7484    0.7881    0.7677       151
        work     0.7069    0.8632    0.7773        95
        pers     0.7807    0.9271    0.8476        96
        date     0.0000    0.0000    0.0000         3
         loc     1.0000    0.6667    0.8000         3

   micro avg     0.7392    0.8391    0.7860       348
   macro avg     0.6472    0.6490    0.6385       348
weighted avg     0.7417    0.8391    0.7860       348

2023-10-13 09:24:29,772 ----------------------------------------------------------------------------------------------------