File size: 24,067 Bytes
eb75f00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
2023-10-13 09:21:50,026 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:50,027 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(32001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=25, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-13 09:21:50,027 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:50,028 MultiCorpus: 1214 train + 266 dev + 251 test sentences
- NER_HIPE_2022 Corpus: 1214 train + 266 dev + 251 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/en/with_doc_seperator
2023-10-13 09:21:50,028 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:50,028 Train: 1214 sentences
2023-10-13 09:21:50,028 (train_with_dev=False, train_with_test=False)
2023-10-13 09:21:50,028 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:50,028 Training Params:
2023-10-13 09:21:50,028 - learning_rate: "3e-05"
2023-10-13 09:21:50,028 - mini_batch_size: "4"
2023-10-13 09:21:50,028 - max_epochs: "10"
2023-10-13 09:21:50,028 - shuffle: "True"
2023-10-13 09:21:50,028 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:50,028 Plugins:
2023-10-13 09:21:50,028 - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 09:21:50,028 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:50,028 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 09:21:50,028 - metric: "('micro avg', 'f1-score')"
2023-10-13 09:21:50,028 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:50,028 Computation:
2023-10-13 09:21:50,028 - compute on device: cuda:0
2023-10-13 09:21:50,028 - embedding storage: none
2023-10-13 09:21:50,028 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:50,028 Model training base path: "hmbench-ajmc/en-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
2023-10-13 09:21:50,028 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:50,028 ----------------------------------------------------------------------------------------------------
2023-10-13 09:21:51,347 epoch 1 - iter 30/304 - loss 3.14643067 - time (sec): 1.32 - samples/sec: 2394.58 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:21:52,663 epoch 1 - iter 60/304 - loss 2.61196539 - time (sec): 2.63 - samples/sec: 2320.36 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:21:53,972 epoch 1 - iter 90/304 - loss 2.01396081 - time (sec): 3.94 - samples/sec: 2304.68 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:21:55,299 epoch 1 - iter 120/304 - loss 1.67837668 - time (sec): 5.27 - samples/sec: 2331.79 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:21:56,627 epoch 1 - iter 150/304 - loss 1.44538259 - time (sec): 6.60 - samples/sec: 2344.67 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:21:57,919 epoch 1 - iter 180/304 - loss 1.26593014 - time (sec): 7.89 - samples/sec: 2345.25 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:21:59,247 epoch 1 - iter 210/304 - loss 1.13260232 - time (sec): 9.22 - samples/sec: 2379.81 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:22:00,544 epoch 1 - iter 240/304 - loss 1.05180921 - time (sec): 10.51 - samples/sec: 2340.22 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:22:01,843 epoch 1 - iter 270/304 - loss 0.96892270 - time (sec): 11.81 - samples/sec: 2327.55 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:22:03,180 epoch 1 - iter 300/304 - loss 0.89480556 - time (sec): 13.15 - samples/sec: 2333.31 - lr: 0.000030 - momentum: 0.000000
2023-10-13 09:22:03,354 ----------------------------------------------------------------------------------------------------
2023-10-13 09:22:03,355 EPOCH 1 done: loss 0.8885 - lr: 0.000030
2023-10-13 09:22:04,289 DEV : loss 0.2071554958820343 - f1-score (micro avg) 0.626
2023-10-13 09:22:04,295 saving best model
2023-10-13 09:22:04,643 ----------------------------------------------------------------------------------------------------
2023-10-13 09:22:05,962 epoch 2 - iter 30/304 - loss 0.21165856 - time (sec): 1.32 - samples/sec: 2085.34 - lr: 0.000030 - momentum: 0.000000
2023-10-13 09:22:07,290 epoch 2 - iter 60/304 - loss 0.19167315 - time (sec): 2.65 - samples/sec: 2177.23 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:22:08,603 epoch 2 - iter 90/304 - loss 0.19618877 - time (sec): 3.96 - samples/sec: 2182.10 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:22:09,912 epoch 2 - iter 120/304 - loss 0.18385430 - time (sec): 5.27 - samples/sec: 2263.49 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:22:11,252 epoch 2 - iter 150/304 - loss 0.17307524 - time (sec): 6.61 - samples/sec: 2299.07 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:22:12,562 epoch 2 - iter 180/304 - loss 0.16495184 - time (sec): 7.92 - samples/sec: 2298.84 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:22:13,913 epoch 2 - iter 210/304 - loss 0.16339515 - time (sec): 9.27 - samples/sec: 2311.24 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:22:15,244 epoch 2 - iter 240/304 - loss 0.15462700 - time (sec): 10.60 - samples/sec: 2298.68 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:22:16,566 epoch 2 - iter 270/304 - loss 0.14853881 - time (sec): 11.92 - samples/sec: 2313.61 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:22:17,894 epoch 2 - iter 300/304 - loss 0.15172585 - time (sec): 13.25 - samples/sec: 2316.42 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:22:18,065 ----------------------------------------------------------------------------------------------------
2023-10-13 09:22:18,065 EPOCH 2 done: loss 0.1509 - lr: 0.000027
2023-10-13 09:22:19,099 DEV : loss 0.13263030350208282 - f1-score (micro avg) 0.8052
2023-10-13 09:22:19,110 saving best model
2023-10-13 09:22:19,589 ----------------------------------------------------------------------------------------------------
2023-10-13 09:22:21,103 epoch 3 - iter 30/304 - loss 0.07128775 - time (sec): 1.51 - samples/sec: 1987.88 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:22:22,663 epoch 3 - iter 60/304 - loss 0.07924825 - time (sec): 3.07 - samples/sec: 1930.84 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:22:24,163 epoch 3 - iter 90/304 - loss 0.07419531 - time (sec): 4.57 - samples/sec: 1943.48 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:22:25,691 epoch 3 - iter 120/304 - loss 0.07614692 - time (sec): 6.10 - samples/sec: 1950.93 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:22:27,183 epoch 3 - iter 150/304 - loss 0.08194671 - time (sec): 7.59 - samples/sec: 1997.01 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:22:28,586 epoch 3 - iter 180/304 - loss 0.08323121 - time (sec): 8.99 - samples/sec: 2047.47 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:22:29,968 epoch 3 - iter 210/304 - loss 0.08266949 - time (sec): 10.37 - samples/sec: 2042.19 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:22:31,388 epoch 3 - iter 240/304 - loss 0.08267050 - time (sec): 11.79 - samples/sec: 2059.00 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:22:32,767 epoch 3 - iter 270/304 - loss 0.08498155 - time (sec): 13.17 - samples/sec: 2084.52 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:22:34,083 epoch 3 - iter 300/304 - loss 0.08168233 - time (sec): 14.49 - samples/sec: 2113.70 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:22:34,256 ----------------------------------------------------------------------------------------------------
2023-10-13 09:22:34,257 EPOCH 3 done: loss 0.0811 - lr: 0.000023
2023-10-13 09:22:35,237 DEV : loss 0.1455976665019989 - f1-score (micro avg) 0.8345
2023-10-13 09:22:35,246 saving best model
2023-10-13 09:22:35,742 ----------------------------------------------------------------------------------------------------
2023-10-13 09:22:37,314 epoch 4 - iter 30/304 - loss 0.06087788 - time (sec): 1.57 - samples/sec: 1853.33 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:22:38,837 epoch 4 - iter 60/304 - loss 0.04317911 - time (sec): 3.09 - samples/sec: 1902.45 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:22:40,372 epoch 4 - iter 90/304 - loss 0.05751885 - time (sec): 4.63 - samples/sec: 1943.09 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:22:41,690 epoch 4 - iter 120/304 - loss 0.06401069 - time (sec): 5.95 - samples/sec: 2064.48 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:22:43,014 epoch 4 - iter 150/304 - loss 0.06280668 - time (sec): 7.27 - samples/sec: 2103.03 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:22:44,311 epoch 4 - iter 180/304 - loss 0.05607160 - time (sec): 8.57 - samples/sec: 2118.71 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:22:45,613 epoch 4 - iter 210/304 - loss 0.05268029 - time (sec): 9.87 - samples/sec: 2158.42 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:22:46,916 epoch 4 - iter 240/304 - loss 0.05793622 - time (sec): 11.17 - samples/sec: 2187.86 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:22:48,214 epoch 4 - iter 270/304 - loss 0.05823567 - time (sec): 12.47 - samples/sec: 2197.64 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:22:49,522 epoch 4 - iter 300/304 - loss 0.05766621 - time (sec): 13.78 - samples/sec: 2217.65 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:22:49,700 ----------------------------------------------------------------------------------------------------
2023-10-13 09:22:49,700 EPOCH 4 done: loss 0.0590 - lr: 0.000020
2023-10-13 09:22:50,623 DEV : loss 0.17554476857185364 - f1-score (micro avg) 0.8324
2023-10-13 09:22:50,630 ----------------------------------------------------------------------------------------------------
2023-10-13 09:22:51,944 epoch 5 - iter 30/304 - loss 0.07644765 - time (sec): 1.31 - samples/sec: 2338.51 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:22:53,253 epoch 5 - iter 60/304 - loss 0.05147929 - time (sec): 2.62 - samples/sec: 2405.54 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:22:54,567 epoch 5 - iter 90/304 - loss 0.04674362 - time (sec): 3.94 - samples/sec: 2330.04 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:22:55,839 epoch 5 - iter 120/304 - loss 0.04940268 - time (sec): 5.21 - samples/sec: 2349.29 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:22:57,125 epoch 5 - iter 150/304 - loss 0.04607070 - time (sec): 6.49 - samples/sec: 2377.87 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:22:58,443 epoch 5 - iter 180/304 - loss 0.04705798 - time (sec): 7.81 - samples/sec: 2370.34 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:22:59,726 epoch 5 - iter 210/304 - loss 0.05046955 - time (sec): 9.09 - samples/sec: 2377.87 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:23:01,069 epoch 5 - iter 240/304 - loss 0.04876882 - time (sec): 10.44 - samples/sec: 2374.22 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:23:02,391 epoch 5 - iter 270/304 - loss 0.04648397 - time (sec): 11.76 - samples/sec: 2340.06 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:23:03,687 epoch 5 - iter 300/304 - loss 0.04716439 - time (sec): 13.06 - samples/sec: 2349.29 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:23:03,855 ----------------------------------------------------------------------------------------------------
2023-10-13 09:23:03,855 EPOCH 5 done: loss 0.0479 - lr: 0.000017
2023-10-13 09:23:04,819 DEV : loss 0.17705786228179932 - f1-score (micro avg) 0.8363
2023-10-13 09:23:04,826 saving best model
2023-10-13 09:23:05,524 ----------------------------------------------------------------------------------------------------
2023-10-13 09:23:06,887 epoch 6 - iter 30/304 - loss 0.03136870 - time (sec): 1.36 - samples/sec: 2645.61 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:23:08,204 epoch 6 - iter 60/304 - loss 0.02093786 - time (sec): 2.67 - samples/sec: 2412.14 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:23:09,529 epoch 6 - iter 90/304 - loss 0.02007314 - time (sec): 4.00 - samples/sec: 2349.37 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:23:10,866 epoch 6 - iter 120/304 - loss 0.01858451 - time (sec): 5.34 - samples/sec: 2355.51 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:23:12,143 epoch 6 - iter 150/304 - loss 0.02451086 - time (sec): 6.61 - samples/sec: 2346.99 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:23:13,539 epoch 6 - iter 180/304 - loss 0.02743372 - time (sec): 8.01 - samples/sec: 2323.17 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:23:15,024 epoch 6 - iter 210/304 - loss 0.03072947 - time (sec): 9.49 - samples/sec: 2280.94 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:23:16,483 epoch 6 - iter 240/304 - loss 0.03654572 - time (sec): 10.95 - samples/sec: 2253.19 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:23:17,907 epoch 6 - iter 270/304 - loss 0.04018440 - time (sec): 12.38 - samples/sec: 2245.72 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:23:19,197 epoch 6 - iter 300/304 - loss 0.03728501 - time (sec): 13.67 - samples/sec: 2238.49 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:23:19,361 ----------------------------------------------------------------------------------------------------
2023-10-13 09:23:19,362 EPOCH 6 done: loss 0.0370 - lr: 0.000013
2023-10-13 09:23:20,415 DEV : loss 0.19094179570674896 - f1-score (micro avg) 0.8287
2023-10-13 09:23:20,427 ----------------------------------------------------------------------------------------------------
2023-10-13 09:23:22,066 epoch 7 - iter 30/304 - loss 0.01848195 - time (sec): 1.64 - samples/sec: 1834.21 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:23:23,748 epoch 7 - iter 60/304 - loss 0.02331449 - time (sec): 3.32 - samples/sec: 1805.55 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:23:25,094 epoch 7 - iter 90/304 - loss 0.02308868 - time (sec): 4.67 - samples/sec: 1936.04 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:23:26,460 epoch 7 - iter 120/304 - loss 0.02624437 - time (sec): 6.03 - samples/sec: 2001.63 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:23:27,835 epoch 7 - iter 150/304 - loss 0.02699705 - time (sec): 7.41 - samples/sec: 2041.57 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:23:29,196 epoch 7 - iter 180/304 - loss 0.02687898 - time (sec): 8.77 - samples/sec: 2063.46 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:23:30,504 epoch 7 - iter 210/304 - loss 0.02865865 - time (sec): 10.07 - samples/sec: 2096.03 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:23:31,815 epoch 7 - iter 240/304 - loss 0.02588328 - time (sec): 11.39 - samples/sec: 2134.69 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:23:33,166 epoch 7 - iter 270/304 - loss 0.02512052 - time (sec): 12.74 - samples/sec: 2170.84 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:23:34,468 epoch 7 - iter 300/304 - loss 0.02644548 - time (sec): 14.04 - samples/sec: 2186.89 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:23:34,632 ----------------------------------------------------------------------------------------------------
2023-10-13 09:23:34,632 EPOCH 7 done: loss 0.0275 - lr: 0.000010
2023-10-13 09:23:35,685 DEV : loss 0.18863379955291748 - f1-score (micro avg) 0.8395
2023-10-13 09:23:35,694 saving best model
2023-10-13 09:23:36,158 ----------------------------------------------------------------------------------------------------
2023-10-13 09:23:37,648 epoch 8 - iter 30/304 - loss 0.01643243 - time (sec): 1.48 - samples/sec: 2065.29 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:23:39,041 epoch 8 - iter 60/304 - loss 0.03486728 - time (sec): 2.88 - samples/sec: 2260.90 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:23:40,513 epoch 8 - iter 90/304 - loss 0.03618987 - time (sec): 4.35 - samples/sec: 2160.67 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:23:41,996 epoch 8 - iter 120/304 - loss 0.02810914 - time (sec): 5.83 - samples/sec: 2101.68 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:23:43,503 epoch 8 - iter 150/304 - loss 0.02495396 - time (sec): 7.34 - samples/sec: 2068.28 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:23:44,887 epoch 8 - iter 180/304 - loss 0.02475730 - time (sec): 8.72 - samples/sec: 2105.50 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:23:46,252 epoch 8 - iter 210/304 - loss 0.02227638 - time (sec): 10.09 - samples/sec: 2115.65 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:23:47,603 epoch 8 - iter 240/304 - loss 0.02349592 - time (sec): 11.44 - samples/sec: 2134.70 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:23:48,966 epoch 8 - iter 270/304 - loss 0.02182563 - time (sec): 12.80 - samples/sec: 2151.68 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:23:50,327 epoch 8 - iter 300/304 - loss 0.01983000 - time (sec): 14.16 - samples/sec: 2160.03 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:23:50,502 ----------------------------------------------------------------------------------------------------
2023-10-13 09:23:50,503 EPOCH 8 done: loss 0.0196 - lr: 0.000007
2023-10-13 09:23:51,493 DEV : loss 0.19373896718025208 - f1-score (micro avg) 0.8424
2023-10-13 09:23:51,501 saving best model
2023-10-13 09:23:51,981 ----------------------------------------------------------------------------------------------------
2023-10-13 09:23:53,527 epoch 9 - iter 30/304 - loss 0.00606087 - time (sec): 1.54 - samples/sec: 1888.65 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:23:55,124 epoch 9 - iter 60/304 - loss 0.00478110 - time (sec): 3.14 - samples/sec: 1942.03 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:23:56,705 epoch 9 - iter 90/304 - loss 0.01683836 - time (sec): 4.72 - samples/sec: 1944.27 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:23:58,287 epoch 9 - iter 120/304 - loss 0.01382272 - time (sec): 6.30 - samples/sec: 1924.42 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:23:59,864 epoch 9 - iter 150/304 - loss 0.01245018 - time (sec): 7.88 - samples/sec: 1925.04 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:24:01,471 epoch 9 - iter 180/304 - loss 0.01679658 - time (sec): 9.49 - samples/sec: 1954.12 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:24:03,084 epoch 9 - iter 210/304 - loss 0.01442450 - time (sec): 11.10 - samples/sec: 1962.68 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:24:04,665 epoch 9 - iter 240/304 - loss 0.01529025 - time (sec): 12.68 - samples/sec: 1959.05 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:24:06,219 epoch 9 - iter 270/304 - loss 0.01588725 - time (sec): 14.24 - samples/sec: 1953.25 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:24:07,748 epoch 9 - iter 300/304 - loss 0.01546630 - time (sec): 15.76 - samples/sec: 1946.35 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:24:07,947 ----------------------------------------------------------------------------------------------------
2023-10-13 09:24:07,947 EPOCH 9 done: loss 0.0154 - lr: 0.000003
2023-10-13 09:24:08,899 DEV : loss 0.19748911261558533 - f1-score (micro avg) 0.8431
2023-10-13 09:24:08,908 saving best model
2023-10-13 09:24:09,414 ----------------------------------------------------------------------------------------------------
2023-10-13 09:24:10,978 epoch 10 - iter 30/304 - loss 0.00023281 - time (sec): 1.56 - samples/sec: 1924.70 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:24:12,582 epoch 10 - iter 60/304 - loss 0.01793737 - time (sec): 3.17 - samples/sec: 1894.23 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:24:14,159 epoch 10 - iter 90/304 - loss 0.01321813 - time (sec): 4.74 - samples/sec: 1953.07 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:24:15,739 epoch 10 - iter 120/304 - loss 0.01092258 - time (sec): 6.32 - samples/sec: 1941.40 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:24:17,285 epoch 10 - iter 150/304 - loss 0.00978840 - time (sec): 7.87 - samples/sec: 1936.01 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:24:18,836 epoch 10 - iter 180/304 - loss 0.01050595 - time (sec): 9.42 - samples/sec: 1936.97 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:24:20,424 epoch 10 - iter 210/304 - loss 0.01376533 - time (sec): 11.01 - samples/sec: 1935.12 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:24:21,997 epoch 10 - iter 240/304 - loss 0.01263724 - time (sec): 12.58 - samples/sec: 1952.40 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:24:23,529 epoch 10 - iter 270/304 - loss 0.01126673 - time (sec): 14.11 - samples/sec: 1957.66 - lr: 0.000000 - momentum: 0.000000
2023-10-13 09:24:25,035 epoch 10 - iter 300/304 - loss 0.01271255 - time (sec): 15.62 - samples/sec: 1963.63 - lr: 0.000000 - momentum: 0.000000
2023-10-13 09:24:25,242 ----------------------------------------------------------------------------------------------------
2023-10-13 09:24:25,242 EPOCH 10 done: loss 0.0126 - lr: 0.000000
2023-10-13 09:24:26,200 DEV : loss 0.19666777551174164 - f1-score (micro avg) 0.8487
2023-10-13 09:24:26,207 saving best model
2023-10-13 09:24:27,064 ----------------------------------------------------------------------------------------------------
2023-10-13 09:24:27,065 Loading model from best epoch ...
2023-10-13 09:24:28,683 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-date, B-date, E-date, I-date, S-object, B-object, E-object, I-object
2023-10-13 09:24:29,772
Results:
- F-score (micro) 0.786
- F-score (macro) 0.6385
- Accuracy 0.6532
By class:
precision recall f1-score support
scope 0.7484 0.7881 0.7677 151
work 0.7069 0.8632 0.7773 95
pers 0.7807 0.9271 0.8476 96
date 0.0000 0.0000 0.0000 3
loc 1.0000 0.6667 0.8000 3
micro avg 0.7392 0.8391 0.7860 348
macro avg 0.6472 0.6490 0.6385 348
weighted avg 0.7417 0.8391 0.7860 348
2023-10-13 09:24:29,772 ----------------------------------------------------------------------------------------------------
|