File size: 23,949 Bytes
7e6f9c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
2023-10-13 08:35:49,871 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:49,872 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-13 08:35:49,872 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:49,872 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-13 08:35:49,872 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:49,872 Train:  1100 sentences
2023-10-13 08:35:49,872         (train_with_dev=False, train_with_test=False)
2023-10-13 08:35:49,872 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:49,872 Training Params:
2023-10-13 08:35:49,872  - learning_rate: "3e-05" 
2023-10-13 08:35:49,872  - mini_batch_size: "8"
2023-10-13 08:35:49,872  - max_epochs: "10"
2023-10-13 08:35:49,872  - shuffle: "True"
2023-10-13 08:35:49,872 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:49,872 Plugins:
2023-10-13 08:35:49,872  - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 08:35:49,872 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:49,872 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 08:35:49,873  - metric: "('micro avg', 'f1-score')"
2023-10-13 08:35:49,873 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:49,873 Computation:
2023-10-13 08:35:49,873  - compute on device: cuda:0
2023-10-13 08:35:49,873  - embedding storage: none
2023-10-13 08:35:49,873 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:49,873 Model training base path: "hmbench-ajmc/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
2023-10-13 08:35:49,873 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:49,873 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:50,616 epoch 1 - iter 13/138 - loss 3.15683476 - time (sec): 0.74 - samples/sec: 3189.10 - lr: 0.000003 - momentum: 0.000000
2023-10-13 08:35:51,303 epoch 1 - iter 26/138 - loss 2.97590677 - time (sec): 1.42 - samples/sec: 3138.04 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:35:52,024 epoch 1 - iter 39/138 - loss 2.59052689 - time (sec): 2.14 - samples/sec: 3037.49 - lr: 0.000008 - momentum: 0.000000
2023-10-13 08:35:52,769 epoch 1 - iter 52/138 - loss 2.12928205 - time (sec): 2.89 - samples/sec: 3024.07 - lr: 0.000011 - momentum: 0.000000
2023-10-13 08:35:53,479 epoch 1 - iter 65/138 - loss 1.89733493 - time (sec): 3.60 - samples/sec: 3011.76 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:35:54,187 epoch 1 - iter 78/138 - loss 1.74800111 - time (sec): 4.31 - samples/sec: 2956.04 - lr: 0.000017 - momentum: 0.000000
2023-10-13 08:35:54,980 epoch 1 - iter 91/138 - loss 1.58409426 - time (sec): 5.10 - samples/sec: 2973.59 - lr: 0.000020 - momentum: 0.000000
2023-10-13 08:35:55,691 epoch 1 - iter 104/138 - loss 1.44967089 - time (sec): 5.81 - samples/sec: 2955.57 - lr: 0.000022 - momentum: 0.000000
2023-10-13 08:35:56,399 epoch 1 - iter 117/138 - loss 1.34104244 - time (sec): 6.52 - samples/sec: 2968.77 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:35:57,123 epoch 1 - iter 130/138 - loss 1.24619147 - time (sec): 7.24 - samples/sec: 2981.49 - lr: 0.000028 - momentum: 0.000000
2023-10-13 08:35:57,538 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:57,539 EPOCH 1 done: loss 1.2061 - lr: 0.000028
2023-10-13 08:35:58,275 DEV : loss 0.2992438077926636 - f1-score (micro avg)  0.6502
2023-10-13 08:35:58,280 saving best model
2023-10-13 08:35:58,652 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:59,357 epoch 2 - iter 13/138 - loss 0.25983347 - time (sec): 0.70 - samples/sec: 2769.65 - lr: 0.000030 - momentum: 0.000000
2023-10-13 08:36:00,083 epoch 2 - iter 26/138 - loss 0.30280514 - time (sec): 1.43 - samples/sec: 2974.06 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:36:00,856 epoch 2 - iter 39/138 - loss 0.28969457 - time (sec): 2.20 - samples/sec: 2978.71 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:36:01,603 epoch 2 - iter 52/138 - loss 0.27768767 - time (sec): 2.95 - samples/sec: 3006.01 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:36:02,420 epoch 2 - iter 65/138 - loss 0.26921623 - time (sec): 3.77 - samples/sec: 2997.75 - lr: 0.000028 - momentum: 0.000000
2023-10-13 08:36:03,123 epoch 2 - iter 78/138 - loss 0.25522822 - time (sec): 4.47 - samples/sec: 2970.26 - lr: 0.000028 - momentum: 0.000000
2023-10-13 08:36:03,848 epoch 2 - iter 91/138 - loss 0.24593549 - time (sec): 5.19 - samples/sec: 2965.62 - lr: 0.000028 - momentum: 0.000000
2023-10-13 08:36:04,589 epoch 2 - iter 104/138 - loss 0.23909381 - time (sec): 5.94 - samples/sec: 2965.65 - lr: 0.000028 - momentum: 0.000000
2023-10-13 08:36:05,356 epoch 2 - iter 117/138 - loss 0.23411641 - time (sec): 6.70 - samples/sec: 2952.40 - lr: 0.000027 - momentum: 0.000000
2023-10-13 08:36:06,063 epoch 2 - iter 130/138 - loss 0.22805297 - time (sec): 7.41 - samples/sec: 2932.26 - lr: 0.000027 - momentum: 0.000000
2023-10-13 08:36:06,517 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:06,517 EPOCH 2 done: loss 0.2288 - lr: 0.000027
2023-10-13 08:36:07,227 DEV : loss 0.14183788001537323 - f1-score (micro avg)  0.7919
2023-10-13 08:36:07,233 saving best model
2023-10-13 08:36:07,718 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:08,438 epoch 3 - iter 13/138 - loss 0.10195422 - time (sec): 0.71 - samples/sec: 2982.10 - lr: 0.000026 - momentum: 0.000000
2023-10-13 08:36:09,168 epoch 3 - iter 26/138 - loss 0.13022547 - time (sec): 1.45 - samples/sec: 3036.65 - lr: 0.000026 - momentum: 0.000000
2023-10-13 08:36:09,910 epoch 3 - iter 39/138 - loss 0.13367901 - time (sec): 2.19 - samples/sec: 3072.58 - lr: 0.000026 - momentum: 0.000000
2023-10-13 08:36:10,607 epoch 3 - iter 52/138 - loss 0.12155712 - time (sec): 2.88 - samples/sec: 3047.37 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:36:11,368 epoch 3 - iter 65/138 - loss 0.12300005 - time (sec): 3.65 - samples/sec: 3049.34 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:36:12,064 epoch 3 - iter 78/138 - loss 0.12568278 - time (sec): 4.34 - samples/sec: 3020.54 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:36:12,783 epoch 3 - iter 91/138 - loss 0.12291916 - time (sec): 5.06 - samples/sec: 2999.08 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:36:13,546 epoch 3 - iter 104/138 - loss 0.11825695 - time (sec): 5.82 - samples/sec: 2982.45 - lr: 0.000024 - momentum: 0.000000
2023-10-13 08:36:14,266 epoch 3 - iter 117/138 - loss 0.12228047 - time (sec): 6.54 - samples/sec: 2992.85 - lr: 0.000024 - momentum: 0.000000
2023-10-13 08:36:14,985 epoch 3 - iter 130/138 - loss 0.11723604 - time (sec): 7.26 - samples/sec: 2962.60 - lr: 0.000024 - momentum: 0.000000
2023-10-13 08:36:15,439 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:15,439 EPOCH 3 done: loss 0.1163 - lr: 0.000024
2023-10-13 08:36:16,078 DEV : loss 0.12795314192771912 - f1-score (micro avg)  0.8404
2023-10-13 08:36:16,084 saving best model
2023-10-13 08:36:16,549 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:17,287 epoch 4 - iter 13/138 - loss 0.06034711 - time (sec): 0.73 - samples/sec: 2955.79 - lr: 0.000023 - momentum: 0.000000
2023-10-13 08:36:18,017 epoch 4 - iter 26/138 - loss 0.07457368 - time (sec): 1.46 - samples/sec: 2940.29 - lr: 0.000023 - momentum: 0.000000
2023-10-13 08:36:18,759 epoch 4 - iter 39/138 - loss 0.06266461 - time (sec): 2.20 - samples/sec: 2990.35 - lr: 0.000022 - momentum: 0.000000
2023-10-13 08:36:19,467 epoch 4 - iter 52/138 - loss 0.07363202 - time (sec): 2.91 - samples/sec: 2966.39 - lr: 0.000022 - momentum: 0.000000
2023-10-13 08:36:20,204 epoch 4 - iter 65/138 - loss 0.07604624 - time (sec): 3.65 - samples/sec: 2937.83 - lr: 0.000022 - momentum: 0.000000
2023-10-13 08:36:20,923 epoch 4 - iter 78/138 - loss 0.07566573 - time (sec): 4.37 - samples/sec: 2951.17 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:36:21,659 epoch 4 - iter 91/138 - loss 0.07965420 - time (sec): 5.10 - samples/sec: 2941.06 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:36:22,414 epoch 4 - iter 104/138 - loss 0.07795115 - time (sec): 5.86 - samples/sec: 2934.96 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:36:23,100 epoch 4 - iter 117/138 - loss 0.07576140 - time (sec): 6.54 - samples/sec: 2936.89 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:36:23,831 epoch 4 - iter 130/138 - loss 0.07503969 - time (sec): 7.27 - samples/sec: 2935.23 - lr: 0.000020 - momentum: 0.000000
2023-10-13 08:36:24,324 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:24,325 EPOCH 4 done: loss 0.0728 - lr: 0.000020
2023-10-13 08:36:24,968 DEV : loss 0.1402752846479416 - f1-score (micro avg)  0.8524
2023-10-13 08:36:24,973 saving best model
2023-10-13 08:36:25,415 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:26,228 epoch 5 - iter 13/138 - loss 0.06027946 - time (sec): 0.81 - samples/sec: 2945.94 - lr: 0.000020 - momentum: 0.000000
2023-10-13 08:36:26,946 epoch 5 - iter 26/138 - loss 0.05871368 - time (sec): 1.52 - samples/sec: 2987.70 - lr: 0.000019 - momentum: 0.000000
2023-10-13 08:36:27,658 epoch 5 - iter 39/138 - loss 0.06897645 - time (sec): 2.24 - samples/sec: 2972.34 - lr: 0.000019 - momentum: 0.000000
2023-10-13 08:36:28,440 epoch 5 - iter 52/138 - loss 0.06086560 - time (sec): 3.02 - samples/sec: 2913.98 - lr: 0.000019 - momentum: 0.000000
2023-10-13 08:36:29,169 epoch 5 - iter 65/138 - loss 0.05969031 - time (sec): 3.75 - samples/sec: 2914.98 - lr: 0.000018 - momentum: 0.000000
2023-10-13 08:36:29,855 epoch 5 - iter 78/138 - loss 0.05410138 - time (sec): 4.43 - samples/sec: 2886.97 - lr: 0.000018 - momentum: 0.000000
2023-10-13 08:36:30,639 epoch 5 - iter 91/138 - loss 0.05821061 - time (sec): 5.22 - samples/sec: 2883.88 - lr: 0.000018 - momentum: 0.000000
2023-10-13 08:36:31,389 epoch 5 - iter 104/138 - loss 0.06126496 - time (sec): 5.97 - samples/sec: 2878.10 - lr: 0.000018 - momentum: 0.000000
2023-10-13 08:36:32,157 epoch 5 - iter 117/138 - loss 0.05957542 - time (sec): 6.74 - samples/sec: 2882.63 - lr: 0.000017 - momentum: 0.000000
2023-10-13 08:36:32,876 epoch 5 - iter 130/138 - loss 0.05797760 - time (sec): 7.45 - samples/sec: 2897.41 - lr: 0.000017 - momentum: 0.000000
2023-10-13 08:36:33,308 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:33,309 EPOCH 5 done: loss 0.0593 - lr: 0.000017
2023-10-13 08:36:33,959 DEV : loss 0.14202465116977692 - f1-score (micro avg)  0.844
2023-10-13 08:36:33,964 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:34,759 epoch 6 - iter 13/138 - loss 0.03744477 - time (sec): 0.79 - samples/sec: 2790.32 - lr: 0.000016 - momentum: 0.000000
2023-10-13 08:36:35,493 epoch 6 - iter 26/138 - loss 0.04100794 - time (sec): 1.53 - samples/sec: 2990.48 - lr: 0.000016 - momentum: 0.000000
2023-10-13 08:36:36,176 epoch 6 - iter 39/138 - loss 0.04319891 - time (sec): 2.21 - samples/sec: 2934.17 - lr: 0.000016 - momentum: 0.000000
2023-10-13 08:36:36,888 epoch 6 - iter 52/138 - loss 0.04264249 - time (sec): 2.92 - samples/sec: 2930.78 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:36:37,604 epoch 6 - iter 65/138 - loss 0.03835619 - time (sec): 3.64 - samples/sec: 2923.30 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:36:38,322 epoch 6 - iter 78/138 - loss 0.04033351 - time (sec): 4.36 - samples/sec: 2934.77 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:36:39,029 epoch 6 - iter 91/138 - loss 0.03574248 - time (sec): 5.06 - samples/sec: 2944.83 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:36:39,747 epoch 6 - iter 104/138 - loss 0.03858039 - time (sec): 5.78 - samples/sec: 2942.32 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:36:40,504 epoch 6 - iter 117/138 - loss 0.04052553 - time (sec): 6.54 - samples/sec: 2965.32 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:36:41,237 epoch 6 - iter 130/138 - loss 0.04293068 - time (sec): 7.27 - samples/sec: 2967.77 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:36:41,688 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:41,689 EPOCH 6 done: loss 0.0429 - lr: 0.000014
2023-10-13 08:36:42,396 DEV : loss 0.1494191288948059 - f1-score (micro avg)  0.8473
2023-10-13 08:36:42,402 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:43,147 epoch 7 - iter 13/138 - loss 0.05958199 - time (sec): 0.74 - samples/sec: 2975.32 - lr: 0.000013 - momentum: 0.000000
2023-10-13 08:36:43,846 epoch 7 - iter 26/138 - loss 0.04101013 - time (sec): 1.44 - samples/sec: 2865.68 - lr: 0.000013 - momentum: 0.000000
2023-10-13 08:36:44,573 epoch 7 - iter 39/138 - loss 0.04307772 - time (sec): 2.17 - samples/sec: 2898.63 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:36:45,302 epoch 7 - iter 52/138 - loss 0.03531247 - time (sec): 2.90 - samples/sec: 2959.93 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:36:46,049 epoch 7 - iter 65/138 - loss 0.04364804 - time (sec): 3.65 - samples/sec: 2950.20 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:36:46,845 epoch 7 - iter 78/138 - loss 0.03840951 - time (sec): 4.44 - samples/sec: 2925.67 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:36:47,597 epoch 7 - iter 91/138 - loss 0.03719766 - time (sec): 5.19 - samples/sec: 2922.63 - lr: 0.000011 - momentum: 0.000000
2023-10-13 08:36:48,381 epoch 7 - iter 104/138 - loss 0.03701463 - time (sec): 5.98 - samples/sec: 2879.81 - lr: 0.000011 - momentum: 0.000000
2023-10-13 08:36:49,112 epoch 7 - iter 117/138 - loss 0.03419231 - time (sec): 6.71 - samples/sec: 2887.75 - lr: 0.000011 - momentum: 0.000000
2023-10-13 08:36:49,811 epoch 7 - iter 130/138 - loss 0.03397131 - time (sec): 7.41 - samples/sec: 2910.57 - lr: 0.000010 - momentum: 0.000000
2023-10-13 08:36:50,236 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:50,237 EPOCH 7 done: loss 0.0353 - lr: 0.000010
2023-10-13 08:36:50,972 DEV : loss 0.15942086279392242 - f1-score (micro avg)  0.8605
2023-10-13 08:36:50,978 saving best model
2023-10-13 08:36:51,624 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:52,339 epoch 8 - iter 13/138 - loss 0.02168777 - time (sec): 0.71 - samples/sec: 3139.01 - lr: 0.000010 - momentum: 0.000000
2023-10-13 08:36:53,113 epoch 8 - iter 26/138 - loss 0.02661765 - time (sec): 1.49 - samples/sec: 2892.93 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:36:53,827 epoch 8 - iter 39/138 - loss 0.02310758 - time (sec): 2.20 - samples/sec: 2899.57 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:36:54,557 epoch 8 - iter 52/138 - loss 0.02772704 - time (sec): 2.93 - samples/sec: 2967.36 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:36:55,356 epoch 8 - iter 65/138 - loss 0.03020615 - time (sec): 3.73 - samples/sec: 2935.59 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:36:56,086 epoch 8 - iter 78/138 - loss 0.02991360 - time (sec): 4.46 - samples/sec: 2930.56 - lr: 0.000008 - momentum: 0.000000
2023-10-13 08:36:56,812 epoch 8 - iter 91/138 - loss 0.03217017 - time (sec): 5.19 - samples/sec: 2953.87 - lr: 0.000008 - momentum: 0.000000
2023-10-13 08:36:57,488 epoch 8 - iter 104/138 - loss 0.02921793 - time (sec): 5.86 - samples/sec: 2906.58 - lr: 0.000008 - momentum: 0.000000
2023-10-13 08:36:58,245 epoch 8 - iter 117/138 - loss 0.02851128 - time (sec): 6.62 - samples/sec: 2886.50 - lr: 0.000007 - momentum: 0.000000
2023-10-13 08:36:58,985 epoch 8 - iter 130/138 - loss 0.02828101 - time (sec): 7.36 - samples/sec: 2922.33 - lr: 0.000007 - momentum: 0.000000
2023-10-13 08:36:59,405 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:59,406 EPOCH 8 done: loss 0.0297 - lr: 0.000007
2023-10-13 08:37:00,121 DEV : loss 0.16467083990573883 - f1-score (micro avg)  0.8701
2023-10-13 08:37:00,127 saving best model
2023-10-13 08:37:00,649 ----------------------------------------------------------------------------------------------------
2023-10-13 08:37:01,403 epoch 9 - iter 13/138 - loss 0.03326079 - time (sec): 0.75 - samples/sec: 2906.43 - lr: 0.000006 - momentum: 0.000000
2023-10-13 08:37:02,188 epoch 9 - iter 26/138 - loss 0.01810971 - time (sec): 1.54 - samples/sec: 2752.67 - lr: 0.000006 - momentum: 0.000000
2023-10-13 08:37:02,882 epoch 9 - iter 39/138 - loss 0.02285897 - time (sec): 2.23 - samples/sec: 2823.58 - lr: 0.000006 - momentum: 0.000000
2023-10-13 08:37:03,592 epoch 9 - iter 52/138 - loss 0.02092099 - time (sec): 2.94 - samples/sec: 2771.75 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:37:04,367 epoch 9 - iter 65/138 - loss 0.02750583 - time (sec): 3.72 - samples/sec: 2823.57 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:37:05,088 epoch 9 - iter 78/138 - loss 0.02769534 - time (sec): 4.44 - samples/sec: 2939.10 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:37:05,823 epoch 9 - iter 91/138 - loss 0.02598387 - time (sec): 5.17 - samples/sec: 2936.80 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:37:06,535 epoch 9 - iter 104/138 - loss 0.02725468 - time (sec): 5.88 - samples/sec: 2960.13 - lr: 0.000004 - momentum: 0.000000
2023-10-13 08:37:07,268 epoch 9 - iter 117/138 - loss 0.02514963 - time (sec): 6.62 - samples/sec: 2939.20 - lr: 0.000004 - momentum: 0.000000
2023-10-13 08:37:07,996 epoch 9 - iter 130/138 - loss 0.02539927 - time (sec): 7.35 - samples/sec: 2933.72 - lr: 0.000004 - momentum: 0.000000
2023-10-13 08:37:08,449 ----------------------------------------------------------------------------------------------------
2023-10-13 08:37:08,449 EPOCH 9 done: loss 0.0270 - lr: 0.000004
2023-10-13 08:37:09,124 DEV : loss 0.16532635688781738 - f1-score (micro avg)  0.8722
2023-10-13 08:37:09,130 saving best model
2023-10-13 08:37:09,633 ----------------------------------------------------------------------------------------------------
2023-10-13 08:37:10,349 epoch 10 - iter 13/138 - loss 0.04651164 - time (sec): 0.71 - samples/sec: 3011.35 - lr: 0.000003 - momentum: 0.000000
2023-10-13 08:37:11,101 epoch 10 - iter 26/138 - loss 0.05835617 - time (sec): 1.47 - samples/sec: 3038.51 - lr: 0.000003 - momentum: 0.000000
2023-10-13 08:37:11,871 epoch 10 - iter 39/138 - loss 0.03954145 - time (sec): 2.24 - samples/sec: 2999.87 - lr: 0.000002 - momentum: 0.000000
2023-10-13 08:37:12,565 epoch 10 - iter 52/138 - loss 0.03736192 - time (sec): 2.93 - samples/sec: 2985.06 - lr: 0.000002 - momentum: 0.000000
2023-10-13 08:37:13,259 epoch 10 - iter 65/138 - loss 0.03082446 - time (sec): 3.62 - samples/sec: 2991.62 - lr: 0.000002 - momentum: 0.000000
2023-10-13 08:37:14,001 epoch 10 - iter 78/138 - loss 0.03061056 - time (sec): 4.37 - samples/sec: 3023.61 - lr: 0.000002 - momentum: 0.000000
2023-10-13 08:37:14,703 epoch 10 - iter 91/138 - loss 0.02816398 - time (sec): 5.07 - samples/sec: 3029.94 - lr: 0.000001 - momentum: 0.000000
2023-10-13 08:37:15,417 epoch 10 - iter 104/138 - loss 0.02637905 - time (sec): 5.78 - samples/sec: 3000.59 - lr: 0.000001 - momentum: 0.000000
2023-10-13 08:37:16,166 epoch 10 - iter 117/138 - loss 0.02611645 - time (sec): 6.53 - samples/sec: 2974.20 - lr: 0.000001 - momentum: 0.000000
2023-10-13 08:37:16,868 epoch 10 - iter 130/138 - loss 0.02470807 - time (sec): 7.23 - samples/sec: 2956.73 - lr: 0.000000 - momentum: 0.000000
2023-10-13 08:37:17,323 ----------------------------------------------------------------------------------------------------
2023-10-13 08:37:17,324 EPOCH 10 done: loss 0.0236 - lr: 0.000000
2023-10-13 08:37:18,006 DEV : loss 0.16804882884025574 - f1-score (micro avg)  0.8656
2023-10-13 08:37:18,460 ----------------------------------------------------------------------------------------------------
2023-10-13 08:37:18,461 Loading model from best epoch ...
2023-10-13 08:37:20,141 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-13 08:37:21,099 
Results:
- F-score (micro) 0.915
- F-score (macro) 0.7102
- Accuracy 0.8516

By class:
              precision    recall  f1-score   support

       scope     0.8883    0.9034    0.8958       176
        pers     0.9612    0.9688    0.9650       128
        work     0.9028    0.8784    0.8904        74
         loc     0.6667    1.0000    0.8000         2
      object     0.0000    0.0000    0.0000         2

   micro avg     0.9138    0.9162    0.9150       382
   macro avg     0.6838    0.7501    0.7102       382
weighted avg     0.9097    0.9162    0.9127       382

2023-10-13 08:37:21,099 ----------------------------------------------------------------------------------------------------