File size: 23,949 Bytes
7e6f9c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
2023-10-13 08:35:49,871 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:49,872 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(32001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=25, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-13 08:35:49,872 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:49,872 MultiCorpus: 1100 train + 206 dev + 240 test sentences
- NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-13 08:35:49,872 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:49,872 Train: 1100 sentences
2023-10-13 08:35:49,872 (train_with_dev=False, train_with_test=False)
2023-10-13 08:35:49,872 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:49,872 Training Params:
2023-10-13 08:35:49,872 - learning_rate: "3e-05"
2023-10-13 08:35:49,872 - mini_batch_size: "8"
2023-10-13 08:35:49,872 - max_epochs: "10"
2023-10-13 08:35:49,872 - shuffle: "True"
2023-10-13 08:35:49,872 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:49,872 Plugins:
2023-10-13 08:35:49,872 - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 08:35:49,872 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:49,872 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 08:35:49,873 - metric: "('micro avg', 'f1-score')"
2023-10-13 08:35:49,873 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:49,873 Computation:
2023-10-13 08:35:49,873 - compute on device: cuda:0
2023-10-13 08:35:49,873 - embedding storage: none
2023-10-13 08:35:49,873 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:49,873 Model training base path: "hmbench-ajmc/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
2023-10-13 08:35:49,873 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:49,873 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:50,616 epoch 1 - iter 13/138 - loss 3.15683476 - time (sec): 0.74 - samples/sec: 3189.10 - lr: 0.000003 - momentum: 0.000000
2023-10-13 08:35:51,303 epoch 1 - iter 26/138 - loss 2.97590677 - time (sec): 1.42 - samples/sec: 3138.04 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:35:52,024 epoch 1 - iter 39/138 - loss 2.59052689 - time (sec): 2.14 - samples/sec: 3037.49 - lr: 0.000008 - momentum: 0.000000
2023-10-13 08:35:52,769 epoch 1 - iter 52/138 - loss 2.12928205 - time (sec): 2.89 - samples/sec: 3024.07 - lr: 0.000011 - momentum: 0.000000
2023-10-13 08:35:53,479 epoch 1 - iter 65/138 - loss 1.89733493 - time (sec): 3.60 - samples/sec: 3011.76 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:35:54,187 epoch 1 - iter 78/138 - loss 1.74800111 - time (sec): 4.31 - samples/sec: 2956.04 - lr: 0.000017 - momentum: 0.000000
2023-10-13 08:35:54,980 epoch 1 - iter 91/138 - loss 1.58409426 - time (sec): 5.10 - samples/sec: 2973.59 - lr: 0.000020 - momentum: 0.000000
2023-10-13 08:35:55,691 epoch 1 - iter 104/138 - loss 1.44967089 - time (sec): 5.81 - samples/sec: 2955.57 - lr: 0.000022 - momentum: 0.000000
2023-10-13 08:35:56,399 epoch 1 - iter 117/138 - loss 1.34104244 - time (sec): 6.52 - samples/sec: 2968.77 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:35:57,123 epoch 1 - iter 130/138 - loss 1.24619147 - time (sec): 7.24 - samples/sec: 2981.49 - lr: 0.000028 - momentum: 0.000000
2023-10-13 08:35:57,538 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:57,539 EPOCH 1 done: loss 1.2061 - lr: 0.000028
2023-10-13 08:35:58,275 DEV : loss 0.2992438077926636 - f1-score (micro avg) 0.6502
2023-10-13 08:35:58,280 saving best model
2023-10-13 08:35:58,652 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:59,357 epoch 2 - iter 13/138 - loss 0.25983347 - time (sec): 0.70 - samples/sec: 2769.65 - lr: 0.000030 - momentum: 0.000000
2023-10-13 08:36:00,083 epoch 2 - iter 26/138 - loss 0.30280514 - time (sec): 1.43 - samples/sec: 2974.06 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:36:00,856 epoch 2 - iter 39/138 - loss 0.28969457 - time (sec): 2.20 - samples/sec: 2978.71 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:36:01,603 epoch 2 - iter 52/138 - loss 0.27768767 - time (sec): 2.95 - samples/sec: 3006.01 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:36:02,420 epoch 2 - iter 65/138 - loss 0.26921623 - time (sec): 3.77 - samples/sec: 2997.75 - lr: 0.000028 - momentum: 0.000000
2023-10-13 08:36:03,123 epoch 2 - iter 78/138 - loss 0.25522822 - time (sec): 4.47 - samples/sec: 2970.26 - lr: 0.000028 - momentum: 0.000000
2023-10-13 08:36:03,848 epoch 2 - iter 91/138 - loss 0.24593549 - time (sec): 5.19 - samples/sec: 2965.62 - lr: 0.000028 - momentum: 0.000000
2023-10-13 08:36:04,589 epoch 2 - iter 104/138 - loss 0.23909381 - time (sec): 5.94 - samples/sec: 2965.65 - lr: 0.000028 - momentum: 0.000000
2023-10-13 08:36:05,356 epoch 2 - iter 117/138 - loss 0.23411641 - time (sec): 6.70 - samples/sec: 2952.40 - lr: 0.000027 - momentum: 0.000000
2023-10-13 08:36:06,063 epoch 2 - iter 130/138 - loss 0.22805297 - time (sec): 7.41 - samples/sec: 2932.26 - lr: 0.000027 - momentum: 0.000000
2023-10-13 08:36:06,517 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:06,517 EPOCH 2 done: loss 0.2288 - lr: 0.000027
2023-10-13 08:36:07,227 DEV : loss 0.14183788001537323 - f1-score (micro avg) 0.7919
2023-10-13 08:36:07,233 saving best model
2023-10-13 08:36:07,718 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:08,438 epoch 3 - iter 13/138 - loss 0.10195422 - time (sec): 0.71 - samples/sec: 2982.10 - lr: 0.000026 - momentum: 0.000000
2023-10-13 08:36:09,168 epoch 3 - iter 26/138 - loss 0.13022547 - time (sec): 1.45 - samples/sec: 3036.65 - lr: 0.000026 - momentum: 0.000000
2023-10-13 08:36:09,910 epoch 3 - iter 39/138 - loss 0.13367901 - time (sec): 2.19 - samples/sec: 3072.58 - lr: 0.000026 - momentum: 0.000000
2023-10-13 08:36:10,607 epoch 3 - iter 52/138 - loss 0.12155712 - time (sec): 2.88 - samples/sec: 3047.37 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:36:11,368 epoch 3 - iter 65/138 - loss 0.12300005 - time (sec): 3.65 - samples/sec: 3049.34 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:36:12,064 epoch 3 - iter 78/138 - loss 0.12568278 - time (sec): 4.34 - samples/sec: 3020.54 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:36:12,783 epoch 3 - iter 91/138 - loss 0.12291916 - time (sec): 5.06 - samples/sec: 2999.08 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:36:13,546 epoch 3 - iter 104/138 - loss 0.11825695 - time (sec): 5.82 - samples/sec: 2982.45 - lr: 0.000024 - momentum: 0.000000
2023-10-13 08:36:14,266 epoch 3 - iter 117/138 - loss 0.12228047 - time (sec): 6.54 - samples/sec: 2992.85 - lr: 0.000024 - momentum: 0.000000
2023-10-13 08:36:14,985 epoch 3 - iter 130/138 - loss 0.11723604 - time (sec): 7.26 - samples/sec: 2962.60 - lr: 0.000024 - momentum: 0.000000
2023-10-13 08:36:15,439 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:15,439 EPOCH 3 done: loss 0.1163 - lr: 0.000024
2023-10-13 08:36:16,078 DEV : loss 0.12795314192771912 - f1-score (micro avg) 0.8404
2023-10-13 08:36:16,084 saving best model
2023-10-13 08:36:16,549 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:17,287 epoch 4 - iter 13/138 - loss 0.06034711 - time (sec): 0.73 - samples/sec: 2955.79 - lr: 0.000023 - momentum: 0.000000
2023-10-13 08:36:18,017 epoch 4 - iter 26/138 - loss 0.07457368 - time (sec): 1.46 - samples/sec: 2940.29 - lr: 0.000023 - momentum: 0.000000
2023-10-13 08:36:18,759 epoch 4 - iter 39/138 - loss 0.06266461 - time (sec): 2.20 - samples/sec: 2990.35 - lr: 0.000022 - momentum: 0.000000
2023-10-13 08:36:19,467 epoch 4 - iter 52/138 - loss 0.07363202 - time (sec): 2.91 - samples/sec: 2966.39 - lr: 0.000022 - momentum: 0.000000
2023-10-13 08:36:20,204 epoch 4 - iter 65/138 - loss 0.07604624 - time (sec): 3.65 - samples/sec: 2937.83 - lr: 0.000022 - momentum: 0.000000
2023-10-13 08:36:20,923 epoch 4 - iter 78/138 - loss 0.07566573 - time (sec): 4.37 - samples/sec: 2951.17 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:36:21,659 epoch 4 - iter 91/138 - loss 0.07965420 - time (sec): 5.10 - samples/sec: 2941.06 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:36:22,414 epoch 4 - iter 104/138 - loss 0.07795115 - time (sec): 5.86 - samples/sec: 2934.96 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:36:23,100 epoch 4 - iter 117/138 - loss 0.07576140 - time (sec): 6.54 - samples/sec: 2936.89 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:36:23,831 epoch 4 - iter 130/138 - loss 0.07503969 - time (sec): 7.27 - samples/sec: 2935.23 - lr: 0.000020 - momentum: 0.000000
2023-10-13 08:36:24,324 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:24,325 EPOCH 4 done: loss 0.0728 - lr: 0.000020
2023-10-13 08:36:24,968 DEV : loss 0.1402752846479416 - f1-score (micro avg) 0.8524
2023-10-13 08:36:24,973 saving best model
2023-10-13 08:36:25,415 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:26,228 epoch 5 - iter 13/138 - loss 0.06027946 - time (sec): 0.81 - samples/sec: 2945.94 - lr: 0.000020 - momentum: 0.000000
2023-10-13 08:36:26,946 epoch 5 - iter 26/138 - loss 0.05871368 - time (sec): 1.52 - samples/sec: 2987.70 - lr: 0.000019 - momentum: 0.000000
2023-10-13 08:36:27,658 epoch 5 - iter 39/138 - loss 0.06897645 - time (sec): 2.24 - samples/sec: 2972.34 - lr: 0.000019 - momentum: 0.000000
2023-10-13 08:36:28,440 epoch 5 - iter 52/138 - loss 0.06086560 - time (sec): 3.02 - samples/sec: 2913.98 - lr: 0.000019 - momentum: 0.000000
2023-10-13 08:36:29,169 epoch 5 - iter 65/138 - loss 0.05969031 - time (sec): 3.75 - samples/sec: 2914.98 - lr: 0.000018 - momentum: 0.000000
2023-10-13 08:36:29,855 epoch 5 - iter 78/138 - loss 0.05410138 - time (sec): 4.43 - samples/sec: 2886.97 - lr: 0.000018 - momentum: 0.000000
2023-10-13 08:36:30,639 epoch 5 - iter 91/138 - loss 0.05821061 - time (sec): 5.22 - samples/sec: 2883.88 - lr: 0.000018 - momentum: 0.000000
2023-10-13 08:36:31,389 epoch 5 - iter 104/138 - loss 0.06126496 - time (sec): 5.97 - samples/sec: 2878.10 - lr: 0.000018 - momentum: 0.000000
2023-10-13 08:36:32,157 epoch 5 - iter 117/138 - loss 0.05957542 - time (sec): 6.74 - samples/sec: 2882.63 - lr: 0.000017 - momentum: 0.000000
2023-10-13 08:36:32,876 epoch 5 - iter 130/138 - loss 0.05797760 - time (sec): 7.45 - samples/sec: 2897.41 - lr: 0.000017 - momentum: 0.000000
2023-10-13 08:36:33,308 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:33,309 EPOCH 5 done: loss 0.0593 - lr: 0.000017
2023-10-13 08:36:33,959 DEV : loss 0.14202465116977692 - f1-score (micro avg) 0.844
2023-10-13 08:36:33,964 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:34,759 epoch 6 - iter 13/138 - loss 0.03744477 - time (sec): 0.79 - samples/sec: 2790.32 - lr: 0.000016 - momentum: 0.000000
2023-10-13 08:36:35,493 epoch 6 - iter 26/138 - loss 0.04100794 - time (sec): 1.53 - samples/sec: 2990.48 - lr: 0.000016 - momentum: 0.000000
2023-10-13 08:36:36,176 epoch 6 - iter 39/138 - loss 0.04319891 - time (sec): 2.21 - samples/sec: 2934.17 - lr: 0.000016 - momentum: 0.000000
2023-10-13 08:36:36,888 epoch 6 - iter 52/138 - loss 0.04264249 - time (sec): 2.92 - samples/sec: 2930.78 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:36:37,604 epoch 6 - iter 65/138 - loss 0.03835619 - time (sec): 3.64 - samples/sec: 2923.30 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:36:38,322 epoch 6 - iter 78/138 - loss 0.04033351 - time (sec): 4.36 - samples/sec: 2934.77 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:36:39,029 epoch 6 - iter 91/138 - loss 0.03574248 - time (sec): 5.06 - samples/sec: 2944.83 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:36:39,747 epoch 6 - iter 104/138 - loss 0.03858039 - time (sec): 5.78 - samples/sec: 2942.32 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:36:40,504 epoch 6 - iter 117/138 - loss 0.04052553 - time (sec): 6.54 - samples/sec: 2965.32 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:36:41,237 epoch 6 - iter 130/138 - loss 0.04293068 - time (sec): 7.27 - samples/sec: 2967.77 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:36:41,688 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:41,689 EPOCH 6 done: loss 0.0429 - lr: 0.000014
2023-10-13 08:36:42,396 DEV : loss 0.1494191288948059 - f1-score (micro avg) 0.8473
2023-10-13 08:36:42,402 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:43,147 epoch 7 - iter 13/138 - loss 0.05958199 - time (sec): 0.74 - samples/sec: 2975.32 - lr: 0.000013 - momentum: 0.000000
2023-10-13 08:36:43,846 epoch 7 - iter 26/138 - loss 0.04101013 - time (sec): 1.44 - samples/sec: 2865.68 - lr: 0.000013 - momentum: 0.000000
2023-10-13 08:36:44,573 epoch 7 - iter 39/138 - loss 0.04307772 - time (sec): 2.17 - samples/sec: 2898.63 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:36:45,302 epoch 7 - iter 52/138 - loss 0.03531247 - time (sec): 2.90 - samples/sec: 2959.93 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:36:46,049 epoch 7 - iter 65/138 - loss 0.04364804 - time (sec): 3.65 - samples/sec: 2950.20 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:36:46,845 epoch 7 - iter 78/138 - loss 0.03840951 - time (sec): 4.44 - samples/sec: 2925.67 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:36:47,597 epoch 7 - iter 91/138 - loss 0.03719766 - time (sec): 5.19 - samples/sec: 2922.63 - lr: 0.000011 - momentum: 0.000000
2023-10-13 08:36:48,381 epoch 7 - iter 104/138 - loss 0.03701463 - time (sec): 5.98 - samples/sec: 2879.81 - lr: 0.000011 - momentum: 0.000000
2023-10-13 08:36:49,112 epoch 7 - iter 117/138 - loss 0.03419231 - time (sec): 6.71 - samples/sec: 2887.75 - lr: 0.000011 - momentum: 0.000000
2023-10-13 08:36:49,811 epoch 7 - iter 130/138 - loss 0.03397131 - time (sec): 7.41 - samples/sec: 2910.57 - lr: 0.000010 - momentum: 0.000000
2023-10-13 08:36:50,236 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:50,237 EPOCH 7 done: loss 0.0353 - lr: 0.000010
2023-10-13 08:36:50,972 DEV : loss 0.15942086279392242 - f1-score (micro avg) 0.8605
2023-10-13 08:36:50,978 saving best model
2023-10-13 08:36:51,624 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:52,339 epoch 8 - iter 13/138 - loss 0.02168777 - time (sec): 0.71 - samples/sec: 3139.01 - lr: 0.000010 - momentum: 0.000000
2023-10-13 08:36:53,113 epoch 8 - iter 26/138 - loss 0.02661765 - time (sec): 1.49 - samples/sec: 2892.93 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:36:53,827 epoch 8 - iter 39/138 - loss 0.02310758 - time (sec): 2.20 - samples/sec: 2899.57 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:36:54,557 epoch 8 - iter 52/138 - loss 0.02772704 - time (sec): 2.93 - samples/sec: 2967.36 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:36:55,356 epoch 8 - iter 65/138 - loss 0.03020615 - time (sec): 3.73 - samples/sec: 2935.59 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:36:56,086 epoch 8 - iter 78/138 - loss 0.02991360 - time (sec): 4.46 - samples/sec: 2930.56 - lr: 0.000008 - momentum: 0.000000
2023-10-13 08:36:56,812 epoch 8 - iter 91/138 - loss 0.03217017 - time (sec): 5.19 - samples/sec: 2953.87 - lr: 0.000008 - momentum: 0.000000
2023-10-13 08:36:57,488 epoch 8 - iter 104/138 - loss 0.02921793 - time (sec): 5.86 - samples/sec: 2906.58 - lr: 0.000008 - momentum: 0.000000
2023-10-13 08:36:58,245 epoch 8 - iter 117/138 - loss 0.02851128 - time (sec): 6.62 - samples/sec: 2886.50 - lr: 0.000007 - momentum: 0.000000
2023-10-13 08:36:58,985 epoch 8 - iter 130/138 - loss 0.02828101 - time (sec): 7.36 - samples/sec: 2922.33 - lr: 0.000007 - momentum: 0.000000
2023-10-13 08:36:59,405 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:59,406 EPOCH 8 done: loss 0.0297 - lr: 0.000007
2023-10-13 08:37:00,121 DEV : loss 0.16467083990573883 - f1-score (micro avg) 0.8701
2023-10-13 08:37:00,127 saving best model
2023-10-13 08:37:00,649 ----------------------------------------------------------------------------------------------------
2023-10-13 08:37:01,403 epoch 9 - iter 13/138 - loss 0.03326079 - time (sec): 0.75 - samples/sec: 2906.43 - lr: 0.000006 - momentum: 0.000000
2023-10-13 08:37:02,188 epoch 9 - iter 26/138 - loss 0.01810971 - time (sec): 1.54 - samples/sec: 2752.67 - lr: 0.000006 - momentum: 0.000000
2023-10-13 08:37:02,882 epoch 9 - iter 39/138 - loss 0.02285897 - time (sec): 2.23 - samples/sec: 2823.58 - lr: 0.000006 - momentum: 0.000000
2023-10-13 08:37:03,592 epoch 9 - iter 52/138 - loss 0.02092099 - time (sec): 2.94 - samples/sec: 2771.75 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:37:04,367 epoch 9 - iter 65/138 - loss 0.02750583 - time (sec): 3.72 - samples/sec: 2823.57 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:37:05,088 epoch 9 - iter 78/138 - loss 0.02769534 - time (sec): 4.44 - samples/sec: 2939.10 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:37:05,823 epoch 9 - iter 91/138 - loss 0.02598387 - time (sec): 5.17 - samples/sec: 2936.80 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:37:06,535 epoch 9 - iter 104/138 - loss 0.02725468 - time (sec): 5.88 - samples/sec: 2960.13 - lr: 0.000004 - momentum: 0.000000
2023-10-13 08:37:07,268 epoch 9 - iter 117/138 - loss 0.02514963 - time (sec): 6.62 - samples/sec: 2939.20 - lr: 0.000004 - momentum: 0.000000
2023-10-13 08:37:07,996 epoch 9 - iter 130/138 - loss 0.02539927 - time (sec): 7.35 - samples/sec: 2933.72 - lr: 0.000004 - momentum: 0.000000
2023-10-13 08:37:08,449 ----------------------------------------------------------------------------------------------------
2023-10-13 08:37:08,449 EPOCH 9 done: loss 0.0270 - lr: 0.000004
2023-10-13 08:37:09,124 DEV : loss 0.16532635688781738 - f1-score (micro avg) 0.8722
2023-10-13 08:37:09,130 saving best model
2023-10-13 08:37:09,633 ----------------------------------------------------------------------------------------------------
2023-10-13 08:37:10,349 epoch 10 - iter 13/138 - loss 0.04651164 - time (sec): 0.71 - samples/sec: 3011.35 - lr: 0.000003 - momentum: 0.000000
2023-10-13 08:37:11,101 epoch 10 - iter 26/138 - loss 0.05835617 - time (sec): 1.47 - samples/sec: 3038.51 - lr: 0.000003 - momentum: 0.000000
2023-10-13 08:37:11,871 epoch 10 - iter 39/138 - loss 0.03954145 - time (sec): 2.24 - samples/sec: 2999.87 - lr: 0.000002 - momentum: 0.000000
2023-10-13 08:37:12,565 epoch 10 - iter 52/138 - loss 0.03736192 - time (sec): 2.93 - samples/sec: 2985.06 - lr: 0.000002 - momentum: 0.000000
2023-10-13 08:37:13,259 epoch 10 - iter 65/138 - loss 0.03082446 - time (sec): 3.62 - samples/sec: 2991.62 - lr: 0.000002 - momentum: 0.000000
2023-10-13 08:37:14,001 epoch 10 - iter 78/138 - loss 0.03061056 - time (sec): 4.37 - samples/sec: 3023.61 - lr: 0.000002 - momentum: 0.000000
2023-10-13 08:37:14,703 epoch 10 - iter 91/138 - loss 0.02816398 - time (sec): 5.07 - samples/sec: 3029.94 - lr: 0.000001 - momentum: 0.000000
2023-10-13 08:37:15,417 epoch 10 - iter 104/138 - loss 0.02637905 - time (sec): 5.78 - samples/sec: 3000.59 - lr: 0.000001 - momentum: 0.000000
2023-10-13 08:37:16,166 epoch 10 - iter 117/138 - loss 0.02611645 - time (sec): 6.53 - samples/sec: 2974.20 - lr: 0.000001 - momentum: 0.000000
2023-10-13 08:37:16,868 epoch 10 - iter 130/138 - loss 0.02470807 - time (sec): 7.23 - samples/sec: 2956.73 - lr: 0.000000 - momentum: 0.000000
2023-10-13 08:37:17,323 ----------------------------------------------------------------------------------------------------
2023-10-13 08:37:17,324 EPOCH 10 done: loss 0.0236 - lr: 0.000000
2023-10-13 08:37:18,006 DEV : loss 0.16804882884025574 - f1-score (micro avg) 0.8656
2023-10-13 08:37:18,460 ----------------------------------------------------------------------------------------------------
2023-10-13 08:37:18,461 Loading model from best epoch ...
2023-10-13 08:37:20,141 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-13 08:37:21,099
Results:
- F-score (micro) 0.915
- F-score (macro) 0.7102
- Accuracy 0.8516
By class:
precision recall f1-score support
scope 0.8883 0.9034 0.8958 176
pers 0.9612 0.9688 0.9650 128
work 0.9028 0.8784 0.8904 74
loc 0.6667 1.0000 0.8000 2
object 0.0000 0.0000 0.0000 2
micro avg 0.9138 0.9162 0.9150 382
macro avg 0.6838 0.7501 0.7102 382
weighted avg 0.9097 0.9162 0.9127 382
2023-10-13 08:37:21,099 ----------------------------------------------------------------------------------------------------
|