""" """ import contextlib from contextvars import ContextVar from io import BytesIO from typing import Any from typing import cast from unittest.mock import patch import torch from torch._inductor.package.package import package_aoti from torch.export.pt2_archive._package import AOTICompiledModel from torch.export.pt2_archive._package_weights import TensorProperties from torch.export.pt2_archive._package_weights import Weights INDUCTOR_CONFIGS_OVERRIDES = { 'aot_inductor.package_constants_in_so': False, 'aot_inductor.package_constants_on_disk': True, 'aot_inductor.package': True, } class ZeroGPUCompiledModel: def __init__(self, archive_file: torch.types.FileLike, weights: Weights, cuda: bool = False): self.archive_file = archive_file self.weights = weights if cuda: self.weights_to_cuda_() self.compiled_model: ContextVar[AOTICompiledModel | None] = ContextVar('compiled_model', default=None) def weights_to_cuda_(self): for name in self.weights: tensor, properties = self.weights.get_weight(name) self.weights[name] = (tensor.to('cuda'), properties) def __call__(self, *args, **kwargs): if (compiled_model := self.compiled_model.get()) is None: constants_map = {name: value[0] for name, value in self.weights.items()} compiled_model = cast(AOTICompiledModel, torch._inductor.aoti_load_package(self.archive_file)) compiled_model.load_constants(constants_map, check_full_update=True, user_managed=True) self.compiled_model.set(compiled_model) return compiled_model(*args, **kwargs) def __reduce__(self): weight_dict: dict[str, tuple[torch.Tensor, TensorProperties]] = {} for name in self.weights: tensor, properties = self.weights.get_weight(name) tensor_ = torch.empty_like(tensor, device='cpu').pin_memory() weight_dict[name] = (tensor_.copy_(tensor).detach().share_memory_(), properties) return ZeroGPUCompiledModel, (self.archive_file, Weights(weight_dict), True) def aoti_compile( exported_program: torch.export.ExportedProgram, inductor_configs: dict[str, Any] | None = None, ): inductor_configs = (inductor_configs or {}) | INDUCTOR_CONFIGS_OVERRIDES gm = cast(torch.fx.GraphModule, exported_program.module()) assert exported_program.example_inputs is not None args, kwargs = exported_program.example_inputs artifacts = torch._inductor.aot_compile(gm, args, kwargs, options=inductor_configs) archive_file = BytesIO() files: list[str | Weights] = [file for file in artifacts if isinstance(file, str)] package_aoti(archive_file, files) weights, = (artifact for artifact in artifacts if isinstance(artifact, Weights)) return ZeroGPUCompiledModel(archive_file, weights) @contextlib.contextmanager def capture_component_call( pipeline: Any, component_name: str, component_method='forward', ): class CapturedCallException(Exception): def __init__(self, *args, **kwargs): super().__init__() self.args = args self.kwargs = kwargs class CapturedCall: def __init__(self): self.args: tuple[Any, ...] = () self.kwargs: dict[str, Any] = {} component = getattr(pipeline, component_name) captured_call = CapturedCall() def capture_call(*args, **kwargs): raise CapturedCallException(*args, **kwargs) with patch.object(component, component_method, new=capture_call): try: yield captured_call except CapturedCallException as e: captured_call.args = e.args captured_call.kwargs = e.kwargs