Spaces:
Running
on
Zero
Running
on
Zero
""" | |
""" | |
import spaces | |
import torch | |
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline | |
from torchao.quantization import quantize_ | |
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig | |
from zerogpu import aoti_compile | |
def _example_tensor(*shape): | |
return torch.randn(*shape, device='cuda', dtype=torch.bfloat16) | |
def optimize_pipeline_(pipeline: FluxPipeline): | |
is_timestep_distilled = not pipeline.transformer.config.guidance_embeds | |
seq_length = 256 if is_timestep_distilled else 512 | |
transformer_kwargs = { | |
'hidden_states': _example_tensor(1, 4096, 64), | |
'timestep': torch.tensor([1.], device='cuda', dtype=torch.bfloat16), | |
'guidance': None if is_timestep_distilled else torch.tensor([1.], device='cuda', dtype=torch.bfloat16), | |
'pooled_projections': _example_tensor(1, 768), | |
'encoder_hidden_states': _example_tensor(1, seq_length, 4096), | |
'txt_ids': _example_tensor(seq_length, 3), | |
'img_ids': _example_tensor(4096, 3), | |
'joint_attention_kwargs': {}, | |
'return_dict': False, | |
} | |
inductor_configs = { | |
'conv_1x1_as_mm': True, | |
'epilogue_fusion': False, | |
'coordinate_descent_tuning': True, | |
'coordinate_descent_check_all_directions': True, | |
'max_autotune': True, | |
'triton.cudagraphs': True, | |
} | |
def compile_transformer(): | |
pipeline.transformer.fuse_qkv_projections() | |
quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig()) | |
exported = torch.export.export(pipeline.transformer, args=(), kwargs=transformer_kwargs) | |
return aoti_compile(exported, inductor_configs) | |
transformer_config = pipeline.transformer.config | |
pipeline.transformer = compile_transformer() | |
pipeline.transformer.config = transformer_config | |