""" """ from typing import Any from typing import Callable from typing import ParamSpec import spaces import torch from torch.utils._pytree import tree_map_only from torchao.quantization import quantize_ from torchao.quantization import Float8DynamicActivationFloat8WeightConfig from optimization_utils import capture_component_call from optimization_utils import aoti_compile from optimization_utils import cudagraph P = ParamSpec('P') TRANSFORMER_HIDDEN_DIM = torch.export.Dim('hidden', min=4096, max=8212) TRANSFORMER_DYNAMIC_SHAPES = { 'hidden_states': {1: TRANSFORMER_HIDDEN_DIM}, 'img_ids': {0: TRANSFORMER_HIDDEN_DIM}, } INDUCTOR_CONFIGS = { 'conv_1x1_as_mm': True, 'epilogue_fusion': False, 'coordinate_descent_tuning': True, 'coordinate_descent_check_all_directions': True, 'max_autotune': True, 'triton.cudagraphs': True, } def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs): @spaces.GPU(duration=1500) def compile_transformer(): with capture_component_call(pipeline, 'transformer') as call: pipeline(*args, **kwargs) dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs) dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES pipeline.transformer.fuse_qkv_projections() quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig()) exported = torch.export.export( mod=pipeline.transformer, args=call.args, kwargs=call.kwargs, dynamic_shapes=dynamic_shapes, ) return aoti_compile(exported, INDUCTOR_CONFIGS) transformer_config = pipeline.transformer.config pipeline.transformer = compile_transformer() pipeline.transformer.config = transformer_config # pyright: ignore[reportAttributeAccessIssue]