cbensimon's picture
cbensimon HF Staff
Update optimization.py
35fad5f verified
"""
"""
from typing import Any
from typing import Callable
from typing import ParamSpec
import spaces
import torch
from torch.utils._pytree import tree_map_only
from torchao.quantization import quantize_
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
from optimization_utils import capture_component_call
from optimization_utils import aoti_compile
from optimization_utils import cudagraph
P = ParamSpec('P')
TRANSFORMER_HIDDEN_DIM = torch.export.Dim('hidden', min=4096, max=8212)
TRANSFORMER_DYNAMIC_SHAPES = {
'hidden_states': {1: TRANSFORMER_HIDDEN_DIM},
'img_ids': {0: TRANSFORMER_HIDDEN_DIM},
}
INDUCTOR_CONFIGS = {
'conv_1x1_as_mm': True,
'epilogue_fusion': False,
'coordinate_descent_tuning': True,
'coordinate_descent_check_all_directions': True,
'max_autotune': True,
'triton.cudagraphs': True,
}
def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
@spaces.GPU(duration=1500)
def compile_transformer():
with capture_component_call(pipeline, 'transformer') as call:
pipeline(*args, **kwargs)
dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs)
dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
pipeline.transformer.fuse_qkv_projections()
quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
exported = torch.export.export(
mod=pipeline.transformer,
args=call.args,
kwargs=call.kwargs,
dynamic_shapes=dynamic_shapes,
)
return aoti_compile(exported, INDUCTOR_CONFIGS)
transformer_config = pipeline.transformer.config
pipeline.transformer = compile_transformer()
pipeline.transformer.config = transformer_config # pyright: ignore[reportAttributeAccessIssue]