FLUX.1-Kontext-Dev-fp8-dynamic / optimization_utils.py
cbensimon's picture
cbensimon HF Staff
cudagraph
dfac6b3
raw
history blame
5.39 kB
"""
"""
import contextlib
from contextvars import ContextVar
from io import BytesIO
from typing import Any
from typing import Callable
from typing import ParamSpec
from typing import TypeVar
from typing import cast
from unittest.mock import patch
import torch
from torch.utils._pytree import tree_map_only
from torch._inductor.package.package import package_aoti
from torch.export.pt2_archive._package import AOTICompiledModel
from torch.export.pt2_archive._package_weights import TensorProperties
from torch.export.pt2_archive._package_weights import Weights
P = ParamSpec('P')
T = TypeVar('T')
INDUCTOR_CONFIGS_OVERRIDES = {
'aot_inductor.package_constants_in_so': False,
'aot_inductor.package_constants_on_disk': True,
'aot_inductor.package': True,
}
class ZeroGPUCompiledModel:
def __init__(self, archive_file: torch.types.FileLike, weights: Weights, cuda: bool = False):
self.archive_file = archive_file
self.weights = weights
if cuda:
self.weights_to_cuda_()
self.compiled_model: ContextVar[AOTICompiledModel | None] = ContextVar('compiled_model', default=None)
def weights_to_cuda_(self):
for name in self.weights:
tensor, properties = self.weights.get_weight(name)
self.weights[name] = (tensor.to('cuda'), properties)
def __call__(self, *args, **kwargs):
if (compiled_model := self.compiled_model.get()) is None:
constants_map = {name: value[0] for name, value in self.weights.items()}
compiled_model = cast(AOTICompiledModel, torch._inductor.aoti_load_package(self.archive_file))
compiled_model.load_constants(constants_map, check_full_update=True, user_managed=True)
self.compiled_model.set(compiled_model)
return compiled_model(*args, **kwargs)
def __reduce__(self):
weight_dict: dict[str, tuple[torch.Tensor, TensorProperties]] = {}
for name in self.weights:
tensor, properties = self.weights.get_weight(name)
tensor_ = torch.empty_like(tensor, device='cpu').pin_memory()
weight_dict[name] = (tensor_.copy_(tensor).detach().share_memory_(), properties)
return ZeroGPUCompiledModel, (self.archive_file, Weights(weight_dict), True)
def aoti_compile(
exported_program: torch.export.ExportedProgram,
inductor_configs: dict[str, Any] | None = None,
):
inductor_configs = (inductor_configs or {}) | INDUCTOR_CONFIGS_OVERRIDES
gm = cast(torch.fx.GraphModule, exported_program.module())
assert exported_program.example_inputs is not None
args, kwargs = exported_program.example_inputs
artifacts = torch._inductor.aot_compile(gm, args, kwargs, options=inductor_configs)
archive_file = BytesIO()
files: list[str | Weights] = [file for file in artifacts if isinstance(file, str)]
package_aoti(archive_file, files)
weights, = (artifact for artifact in artifacts if isinstance(artifact, Weights))
return ZeroGPUCompiledModel(archive_file, weights)
def cudagraph(fn: Callable[P, list[torch.Tensor]]):
graphs = {}
def fn_(*args: P.args, **kwargs: P.kwargs):
key = hash(tuple(
tuple(kwarg.shape)
for a in sorted(kwargs.keys())
if isinstance((kwarg := kwargs[a]), torch.Tensor)
))
if key in graphs:
wrapped, *_ = graphs[key]
return wrapped(*args, **kwargs)
graph = torch.cuda.CUDAGraph()
in_args, in_kwargs = tree_map_only(torch.Tensor, lambda t: t.clone(), (args, kwargs))
in_args, in_kwargs = _cast_as((args, kwargs), (in_args, in_kwargs))
fn(*in_args, **in_kwargs)
with torch.cuda.graph(graph):
out_tensors = fn(*in_args, **in_kwargs)
def wrapped(*args: P.args, **kwargs: P.kwargs):
for a, b in zip(in_args, args):
if isinstance(a, torch.Tensor):
assert isinstance(b, torch.Tensor)
a.copy_(b)
for key in kwargs:
if isinstance((kwarg := kwargs[key]), torch.Tensor):
assert isinstance((in_kwarg := in_kwargs[key]), torch.Tensor)
in_kwarg.copy_(kwarg)
graph.replay()
return [tensor.clone() for tensor in out_tensors]
graphs[key] = (wrapped, graph, in_args, in_kwargs, out_tensors)
return wrapped(*args, **kwargs)
return fn_
@contextlib.contextmanager
def capture_component_call(
pipeline: Any,
component_name: str,
component_method='forward',
):
class CapturedCallException(Exception):
def __init__(self, *args, **kwargs):
super().__init__()
self.args = args
self.kwargs = kwargs
class CapturedCall:
def __init__(self):
self.args: tuple[Any, ...] = ()
self.kwargs: dict[str, Any] = {}
component = getattr(pipeline, component_name)
captured_call = CapturedCall()
def capture_call(*args, **kwargs):
raise CapturedCallException(*args, **kwargs)
with patch.object(component, component_method, new=capture_call):
try:
yield captured_call
except CapturedCallException as e:
captured_call.args = e.args
captured_call.kwargs = e.kwargs
def _cast_as(type_from: T, value: Any) -> T:
return value