zRzRzRzRzRzRzR commited on
Commit
f0ae490
·
1 Parent(s): fff6dc8
README.md CHANGED
@@ -1,37 +1,23 @@
1
  ---
2
- title: CogVideoX-5B
3
- emoji: 🎥
4
  colorFrom: yellow
5
  colorTo: blue
6
  sdk: gradio
7
- sdk_version: 4.44.0
8
  suggested_hardware: l40sx1
9
  suggested_storage: large
10
  app_port: 7860
11
  app_file: app.py
12
  models:
13
- - THUDM/CogVideoX-5b
14
  tags:
15
- - cogvideox
16
- - video-generation
17
- - thudm
18
- short_description: Text-to-Video
19
  disable_embedding: false
20
  ---
21
 
22
- # Gradio Composite Demo
23
-
24
- This Gradio demo integrates the CogVideoX-5B model, allowing you to perform video inference directly in your browser. It
25
- supports features like UpScale, RIFE, and other functionalities.
26
-
27
- ## Environment Setup
28
-
29
- Set the following environment variables in your system:
30
-
31
- + OPENAI_API_KEY = your_api_key
32
- + OPENAI_BASE_URL= your_base_url
33
- + GRADIO_TEMP_DIR= gradio_tmp
34
-
35
  ## Installation
36
 
37
  ```bash
@@ -41,7 +27,7 @@ pip install -r requirements.txt
41
  ## Running the code
42
 
43
  ```bash
44
- python gradio_web_demo.py
45
  ```
46
 
47
 
 
1
  ---
2
+ title: GLM-4.1V-9B
3
+ emoji: 🖼️
4
  colorFrom: yellow
5
  colorTo: blue
6
  sdk: gradio
7
+ sdk_version: 5.25.2
8
  suggested_hardware: l40sx1
9
  suggested_storage: large
10
  app_port: 7860
11
  app_file: app.py
12
  models:
13
+ - THUDM/GLM-4.1V-9B
14
  tags:
15
+ - image2text
16
+ - GLM
17
+ short_description: Image-to-Text
 
18
  disable_embedding: false
19
  ---
20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  ## Installation
22
 
23
  ```bash
 
27
  ## Running the code
28
 
29
  ```bash
30
+ python app.py
31
  ```
32
 
33
 
app.py CHANGED
@@ -1,491 +1,272 @@
1
- """
2
- THis is the main file for the gradio web demo. It uses the CogVideoX-5B model to generate videos gradio web demo.
3
- set environment variable OPENAI_API_KEY to use the OpenAI API to enhance the prompt.
4
-
5
- Usage:
6
- OpenAI_API_KEY=your_openai_api_key OPENAI_BASE_URL=https://api.openai.com/v1 python inference/gradio_web_demo.py
7
- """
8
-
9
- import math
10
- import os
11
- import random
12
- import threading
13
- import time
14
-
15
- import cv2
16
- import tempfile
17
- import imageio_ffmpeg
18
  import gradio as gr
19
  import torch
20
- from PIL import Image
21
- from diffusers import (
22
- CogVideoXPipeline,
23
- CogVideoXDPMScheduler,
24
- CogVideoXVideoToVideoPipeline,
25
- CogVideoXImageToVideoPipeline,
26
- CogVideoXTransformer3DModel,
27
- )
28
- from diffusers.utils import load_video, load_image
29
- from datetime import datetime, timedelta
30
-
31
- from diffusers.image_processor import VaeImageProcessor
32
- from openai import OpenAI
33
- import moviepy.editor as mp
34
- import utils
35
- from rife_model import load_rife_model, rife_inference_with_latents
36
- from huggingface_hub import hf_hub_download, snapshot_download
37
- import gc
38
-
39
- device = "cuda" if torch.cuda.is_available() else "cpu"
40
-
41
- hf_hub_download(repo_id="ai-forever/Real-ESRGAN", filename="RealESRGAN_x4.pth", local_dir="model_real_esran")
42
- snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife")
43
-
44
- pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16).to("cpu")
45
- pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
46
-
47
- i2v_transformer = CogVideoXTransformer3DModel.from_pretrained(
48
- "THUDM/CogVideoX-5b-I2V", subfolder="transformer", torch_dtype=torch.bfloat16
49
- )
50
 
51
- # pipe.transformer.to(memory_format=torch.channels_last)
52
- # pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
53
- # pipe_image.transformer.to(memory_format=torch.channels_last)
54
- # pipe_image.transformer = torch.compile(pipe_image.transformer, mode="max-autotune", fullgraph=True)
55
 
56
- os.makedirs("./output", exist_ok=True)
57
- os.makedirs("./gradio_tmp", exist_ok=True)
58
 
59
- upscale_model = utils.load_sd_upscale("model_real_esran/RealESRGAN_x4.pth", device)
60
- frame_interpolation_model = load_rife_model("model_rife")
 
 
 
61
 
62
- sys_prompt = """You are part of a team of bots that creates videos. You work with an assistant bot that will draw anything you say in square brackets.
 
 
 
 
 
 
 
63
 
64
- For example , outputting " a beautiful morning in the woods with the sun peaking through the trees " will trigger your partner bot to output an video of a forest morning , as described. You will be prompted by people looking to create detailed , amazing videos. The way to accomplish this is to take their short prompts and make them extremely detailed and descriptive.
65
- There are a few rules to follow:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
- You will only ever output a single video description per user request.
 
 
 
 
 
 
 
 
 
 
68
 
69
- When modifications are requested , you should not simply make the description longer . You should refactor the entire description to integrate the suggestions.
70
- Other times the user will not want modifications , but instead want a new image . In this case , you should ignore your previous conversation with the user.
71
 
72
- Video descriptions must have the same num of words as examples below. Extra words will be ignored.
73
- """
74
 
 
 
75
 
76
- def resize_if_unfit(input_video, progress=gr.Progress(track_tqdm=True)):
77
- width, height = get_video_dimensions(input_video)
 
 
 
78
 
79
- if width == 720 and height == 480:
80
- processed_video = input_video
81
- else:
82
- processed_video = center_crop_resize(input_video)
83
- return processed_video
84
-
85
-
86
- def get_video_dimensions(input_video_path):
87
- reader = imageio_ffmpeg.read_frames(input_video_path)
88
- metadata = next(reader)
89
- return metadata["size"]
90
-
91
-
92
- def center_crop_resize(input_video_path, target_width=720, target_height=480):
93
- cap = cv2.VideoCapture(input_video_path)
94
-
95
- orig_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
96
- orig_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
97
- orig_fps = cap.get(cv2.CAP_PROP_FPS)
98
- total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
99
-
100
- width_factor = target_width / orig_width
101
- height_factor = target_height / orig_height
102
- resize_factor = max(width_factor, height_factor)
103
-
104
- inter_width = int(orig_width * resize_factor)
105
- inter_height = int(orig_height * resize_factor)
106
-
107
- target_fps = 8
108
- ideal_skip = max(0, math.ceil(orig_fps / target_fps) - 1)
109
- skip = min(5, ideal_skip) # Cap at 5
110
-
111
- while (total_frames / (skip + 1)) < 49 and skip > 0:
112
- skip -= 1
113
-
114
- processed_frames = []
115
- frame_count = 0
116
- total_read = 0
117
-
118
- while frame_count < 49 and total_read < total_frames:
119
- ret, frame = cap.read()
120
- if not ret:
121
- break
122
-
123
- if total_read % (skip + 1) == 0:
124
- resized = cv2.resize(frame, (inter_width, inter_height), interpolation=cv2.INTER_AREA)
125
-
126
- start_x = (inter_width - target_width) // 2
127
- start_y = (inter_height - target_height) // 2
128
- cropped = resized[start_y : start_y + target_height, start_x : start_x + target_width]
129
-
130
- processed_frames.append(cropped)
131
- frame_count += 1
132
-
133
- total_read += 1
134
-
135
- cap.release()
136
-
137
- with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file:
138
- temp_video_path = temp_file.name
139
- fourcc = cv2.VideoWriter_fourcc(*"mp4v")
140
- out = cv2.VideoWriter(temp_video_path, fourcc, target_fps, (target_width, target_height))
141
-
142
- for frame in processed_frames:
143
- out.write(frame)
144
-
145
- out.release()
146
-
147
- return temp_video_path
148
-
149
-
150
- def convert_prompt(prompt: str, retry_times: int = 3) -> str:
151
- if not os.environ.get("OPENAI_API_KEY"):
152
- return prompt
153
- client = OpenAI()
154
- text = prompt.strip()
155
-
156
- for i in range(retry_times):
157
- response = client.chat.completions.create(
158
- messages=[
159
- {"role": "system", "content": sys_prompt},
160
- {
161
- "role": "user",
162
- "content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : "a girl is on the beach"',
163
- },
164
- {
165
- "role": "assistant",
166
- "content": "A radiant woman stands on a deserted beach, arms outstretched, wearing a beige trench coat, white blouse, light blue jeans, and chic boots, against a backdrop of soft sky and sea. Moments later, she is seen mid-twirl, arms exuberant, with the lighting suggesting dawn or dusk. Then, she runs along the beach, her attire complemented by an off-white scarf and black ankle boots, the tranquil sea behind her. Finally, she holds a paper airplane, her pose reflecting joy and freedom, with the ocean's gentle waves and the sky's soft pastel hues enhancing the serene ambiance.",
167
- },
168
- {
169
- "role": "user",
170
- "content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : "A man jogging on a football field"',
171
- },
172
- {
173
- "role": "assistant",
174
- "content": "A determined man in athletic attire, including a blue long-sleeve shirt, black shorts, and blue socks, jogs around a snow-covered soccer field, showcasing his solitary exercise in a quiet, overcast setting. His long dreadlocks, focused expression, and the serene winter backdrop highlight his dedication to fitness. As he moves, his attire, consisting of a blue sports sweatshirt, black athletic pants, gloves, and sneakers, grips the snowy ground. He is seen running past a chain-link fence enclosing the playground area, with a basketball hoop and children's slide, suggesting a moment of solitary exercise amidst the empty field.",
175
- },
176
- {
177
- "role": "user",
178
- "content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : " A woman is dancing, HD footage, close-up"',
179
- },
180
- {
181
- "role": "assistant",
182
- "content": "A young woman with her hair in an updo and wearing a teal hoodie stands against a light backdrop, initially looking over her shoulder with a contemplative expression. She then confidently makes a subtle dance move, suggesting rhythm and movement. Next, she appears poised and focused, looking directly at the camera. Her expression shifts to one of introspection as she gazes downward slightly. Finally, she dances with confidence, her left hand over her heart, symbolizing a poignant moment, all while dressed in the same teal hoodie against a plain, light-colored background.",
183
- },
184
- {
185
- "role": "user",
186
- "content": f'Create an imaginative video descriptive caption or modify an earlier caption in ENGLISH for the user input: "{text}"',
187
- },
188
- ],
189
- model="glm-4-plus",
190
- temperature=0.01,
191
- top_p=0.7,
192
- stream=False,
193
- max_tokens=200,
194
  )
195
- if response.choices:
196
- return response.choices[0].message.content
197
- return prompt
198
-
199
-
200
- def infer(
201
- prompt: str,
202
- image_input: str,
203
- video_input: str,
204
- video_strenght: float,
205
- num_inference_steps: int,
206
- guidance_scale: float,
207
- seed: int = -1,
208
- progress=gr.Progress(track_tqdm=True),
209
- ):
210
- if seed == -1:
211
- seed = random.randint(0, 2**8 - 1)
212
-
213
- if video_input is not None:
214
- video = load_video(video_input)[:49] # Limit to 49 frames
215
- pipe_video = CogVideoXVideoToVideoPipeline.from_pretrained(
216
- "THUDM/CogVideoX-5b",
217
- transformer=pipe.transformer,
218
- vae=pipe.vae,
219
- scheduler=pipe.scheduler,
220
- tokenizer=pipe.tokenizer,
221
- text_encoder=pipe.text_encoder,
222
- torch_dtype=torch.bfloat16,
223
- ).to(device)
224
- video_pt = pipe_video(
225
- video=video,
226
- prompt=prompt,
227
- num_inference_steps=num_inference_steps,
228
- num_videos_per_prompt=1,
229
- strength=video_strenght,
230
- use_dynamic_cfg=True,
231
- output_type="pt",
232
- guidance_scale=guidance_scale,
233
- generator=torch.Generator(device="cpu").manual_seed(seed),
234
- ).frames
235
- pipe_video.to("cpu")
236
- del pipe_video
237
- gc.collect()
238
- torch.cuda.empty_cache()
239
- elif image_input is not None:
240
- pipe_image = CogVideoXImageToVideoPipeline.from_pretrained(
241
- "THUDM/CogVideoX-5b-I2V",
242
- transformer=i2v_transformer,
243
- vae=pipe.vae,
244
- scheduler=pipe.scheduler,
245
- tokenizer=pipe.tokenizer,
246
- text_encoder=pipe.text_encoder,
247
- torch_dtype=torch.bfloat16,
248
- ).to(device)
249
- image_input = Image.fromarray(image_input).resize(size=(720, 480)) # Convert to PIL
250
- image = load_image(image_input)
251
- video_pt = pipe_image(
252
- image=image,
253
- prompt=prompt,
254
- num_inference_steps=num_inference_steps,
255
- num_videos_per_prompt=1,
256
- use_dynamic_cfg=True,
257
- output_type="pt",
258
- guidance_scale=guidance_scale,
259
- generator=torch.Generator(device="cpu").manual_seed(seed),
260
- ).frames
261
- pipe_image.to("cpu")
262
- del pipe_image
263
- gc.collect()
264
- torch.cuda.empty_cache()
265
- else:
266
- pipe.to(device)
267
- video_pt = pipe(
268
- prompt=prompt,
269
- num_videos_per_prompt=1,
270
- num_inference_steps=num_inference_steps,
271
- num_frames=49,
272
- use_dynamic_cfg=True,
273
- output_type="pt",
274
- guidance_scale=guidance_scale,
275
- generator=torch.Generator(device="cpu").manual_seed(seed),
276
- ).frames
277
- pipe.to("cpu")
278
- gc.collect()
279
- return (video_pt, seed)
280
-
281
-
282
- def convert_to_gif(video_path):
283
- clip = mp.VideoFileClip(video_path)
284
- clip = clip.set_fps(8)
285
- clip = clip.resize(height=240)
286
- gif_path = video_path.replace(".mp4", ".gif")
287
- clip.write_gif(gif_path, fps=8)
288
- return gif_path
289
-
290
-
291
- def delete_old_files():
292
- while True:
293
- now = datetime.now()
294
- cutoff = now - timedelta(minutes=10)
295
- directories = ["./output", "./gradio_tmp"]
296
-
297
- for directory in directories:
298
- for filename in os.listdir(directory):
299
- file_path = os.path.join(directory, filename)
300
- if os.path.isfile(file_path):
301
- file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path))
302
- if file_mtime < cutoff:
303
- os.remove(file_path)
304
- time.sleep(600)
305
-
306
-
307
- threading.Thread(target=delete_old_files, daemon=True).start()
308
- examples_videos = [["example_videos/horse.mp4"], ["example_videos/kitten.mp4"], ["example_videos/train_running.mp4"]]
309
- examples_images = [["example_images/beach.png"], ["example_images/street.png"], ["example_images/camping.png"]]
310
-
311
- with gr.Blocks() as demo:
312
  gr.Markdown("""
313
- <div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
314
- CogVideoX-5B Huggingface Space🤗
315
- </div>
316
- <div style="text-align: center;">
317
- <a href="https://huggingface.co/THUDM/CogVideoX-5B">🤗 5B(T2V) Model Hub</a> |
318
- <a href="https://huggingface.co/THUDM/CogVideoX-5B-I2V">🤗 5B(I2V) Model Hub</a> |
319
- <a href="https://github.com/THUDM/CogVideo">🌐 Github</a> |
320
- <a href="https://arxiv.org/pdf/2408.06072">📜 arxiv </a>
321
- </div>
322
- <div style="text-align: center;display: flex;justify-content: center;align-items: center;margin-top: 1em;margin-bottom: .5em;">
323
- <span>If the Space is too busy, duplicate it to use privately</span>
324
- <a href="https://huggingface.co/spaces/THUDM/CogVideoX-5B-Space?duplicate=true"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg.svg" width="160" style="
325
- margin-left: .75em;
326
- "></a>
327
- </div>
328
- <div style="text-align: center; font-size: 15px; font-weight: bold; color: red; margin-bottom: 20px;">
329
- ⚠️ This demo is for academic research and experiential use only.
330
- </div>
331
- """)
332
  with gr.Row():
333
- with gr.Column():
334
- with gr.Accordion("I2V: Image Input (cannot be used simultaneously with video input)", open=False):
335
- image_input = gr.Image(label="Input Image (will be cropped to 720 * 480)")
336
- examples_component_images = gr.Examples(examples_images, inputs=[image_input], cache_examples=False)
337
- with gr.Accordion("V2V: Video Input (cannot be used simultaneously with image input)", open=False):
338
- video_input = gr.Video(label="Input Video (will be cropped to 49 frames, 6 seconds at 8fps)")
339
- strength = gr.Slider(0.1, 1.0, value=0.8, step=0.01, label="Strength")
340
- examples_component_videos = gr.Examples(examples_videos, inputs=[video_input], cache_examples=False)
341
- prompt = gr.Textbox(label="Prompt (Less than 200 Words)", placeholder="Enter your prompt here", lines=5)
342
-
343
  with gr.Row():
344
- gr.Markdown(
345
- "✨Upon pressing the enhanced prompt button, we will use [GLM-4 Model](https://github.com/THUDM/GLM-4) to polish the prompt and overwrite the original one."
346
- )
347
- enhance_button = gr.Button("✨ Enhance Prompt(Optional)")
348
- with gr.Group():
349
- with gr.Column():
350
- with gr.Row():
351
- seed_param = gr.Number(
352
- label="Inference Seed (Enter a positive number, -1 for random)", value=-1
353
- )
354
- with gr.Row():
355
- enable_scale = gr.Checkbox(label="Super-Resolution (720 × 480 -> 2880 × 1920)", value=False)
356
- enable_rife = gr.Checkbox(label="Frame Interpolation (8fps -> 16fps)", value=False)
357
- gr.Markdown(
358
- "✨In this demo, we use [RIFE](https://github.com/hzwer/ECCV2022-RIFE) for frame interpolation and [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) for upscaling(Super-Resolution).<br>&nbsp;&nbsp;&nbsp;&nbsp;The entire process is based on open-source solutions."
359
- )
360
-
361
- generate_button = gr.Button("🎬 Generate Video")
362
-
363
- with gr.Column():
364
- video_output = gr.Video(label="CogVideoX Generate Video", width=720, height=480)
365
- with gr.Row():
366
- download_video_button = gr.File(label="📥 Download Video", visible=False)
367
- download_gif_button = gr.File(label="📥 Download GIF", visible=False)
368
- seed_text = gr.Number(label="Seed Used for Video Generation", visible=False)
369
-
370
- gr.Markdown("""
371
- <table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
372
- <div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
373
- 🎥 Video Gallery
374
- </div>
375
- <tr>
376
- <td style="width: 25%; vertical-align: top; font-size: 0.9em;">
377
- <p>A garden comes to life as a kaleidoscope of butterflies flutters amidst the blossoms, their delicate wings casting shadows on the petals below. In the background, a grand fountain cascades water with a gentle splendor, its rhythmic sound providing a soothing backdrop. Beneath the cool shade of a mature tree, a solitary wooden chair invites solitude and reflection, its smooth surface worn by the touch of countless visitors seeking a moment of tranquility in nature's embrace.</p>
378
- </td>
379
- <td style="width: 25%; vertical-align: top;">
380
- <video src="https://github.com/user-attachments/assets/cf5953ea-96d3-48fd-9907-c4708752c714" width="100%" controls autoplay loop></video>
381
- </td>
382
- <td style="width: 25%; vertical-align: top; font-size: 0.9em;">
383
- <p>A small boy, head bowed and determination etched on his face, sprints through the torrential downpour as lightning crackles and thunder rumbles in the distance. The relentless rain pounds the ground, creating a chaotic dance of water droplets that mirror the dramatic sky's anger. In the far background, the silhouette of a cozy home beckons, a faint beacon of safety and warmth amidst the fierce weather. The scene is one of perseverance and the unyielding spirit of a child braving the elements.</p>
384
- </td>
385
- <td style="width: 25%; vertical-align: top;">
386
- <video src="https://github.com/user-attachments/assets/fe0a78e6-b669-4800-8cf0-b5f9b5145b52" width="100%" controls autoplay loop></video>
387
- </td>
388
- </tr>
389
- <tr>
390
- <td style="width: 25%; vertical-align: top; font-size: 0.9em;">
391
- <p>A suited astronaut, with the red dust of Mars clinging to their boots, reaches out to shake hands with an alien being, their skin a shimmering blue, under the pink-tinged sky of the fourth planet. In the background, a sleek silver rocket, a beacon of human ingenuity, stands tall, its engines powered down, as the two representatives of different worlds exchange a historic greeting amidst the desolate beauty of the Martian landscape.</p>
392
- </td>
393
- <td style="width: 25%; vertical-align: top;">
394
- <video src="https://github.com/user-attachments/assets/c182f606-8f8c-421d-b414-8487070fcfcb" width="100%" controls autoplay loop></video>
395
- </td>
396
- <td style="width: 25%; vertical-align: top; font-size: 0.9em;">
397
- <p>An elderly gentleman, with a serene expression, sits at the water's edge, a steaming cup of tea by his side. He is engrossed in his artwork, brush in hand, as he renders an oil painting on a canvas that's propped up against a small, weathered table. The sea breeze whispers through his silver hair, gently billowing his loose-fitting white shirt, while the salty air adds an intangible element to his masterpiece in progress. The scene is one of tranquility and inspiration, with the artist's canvas capturing the vibrant hues of the setting sun reflecting off the tranquil sea.</p>
398
- </td>
399
- <td style="width: 25%; vertical-align: top;">
400
- <video src="https://github.com/user-attachments/assets/7db2bbce-194d-434d-a605-350254b6c298" width="100%" controls autoplay loop></video>
401
- </td>
402
- </tr>
403
- <tr>
404
- <td style="width: 25%; vertical-align: top; font-size: 0.9em;">
405
- <p>In a dimly lit bar, purplish light bathes the face of a mature man, his eyes blinking thoughtfully as he ponders in close-up, the background artfully blurred to focus on his introspective expression, the ambiance of the bar a mere suggestion of shadows and soft lighting.</p>
406
- </td>
407
- <td style="width: 25%; vertical-align: top;">
408
- <video src="https://github.com/user-attachments/assets/62b01046-8cab-44cc-bd45-4d965bb615ec" width="100%" controls autoplay loop></video>
409
- </td>
410
- <td style="width: 25%; vertical-align: top; font-size: 0.9em;">
411
- <p>A golden retriever, sporting sleek black sunglasses, with its lengthy fur flowing in the breeze, sprints playfully across a rooftop terrace, recently refreshed by a light rain. The scene unfolds from a distance, the dog's energetic bounds growing larger as it approaches the camera, its tail wagging with unrestrained joy, while droplets of water glisten on the concrete behind it. The overcast sky provides a dramatic backdrop, emphasizing the vibrant golden coat of the canine as it dashes towards the viewer.</p>
412
- </td>
413
- <td style="width: 25%; vertical-align: top;">
414
- <video src="https://github.com/user-attachments/assets/d78e552a-4b3f-4b81-ac3f-3898079554f6" width="100%" controls autoplay loop></video>
415
- </td>
416
- </tr>
417
- <tr>
418
- <td style="width: 25%; vertical-align: top; font-size: 0.9em;">
419
- <p>On a brilliant sunny day, the lakeshore is lined with an array of willow trees, their slender branches swaying gently in the soft breeze. The tranquil surface of the lake reflects the clear blue sky, while several elegant swans glide gracefully through the still water, leaving behind delicate ripples that disturb the mirror-like quality of the lake. The scene is one of serene beauty, with the willows' greenery providing a picturesque frame for the peaceful avian visitors.</p>
420
- </td>
421
- <td style="width: 25%; vertical-align: top;">
422
- <video src="https://github.com/user-attachments/assets/30894f12-c741-44a2-9e6e-ddcacc231e5b" width="100%" controls autoplay loop></video>
423
- </td>
424
- <td style="width: 25%; vertical-align: top; font-size: 0.9em;">
425
- <p>A Chinese mother, draped in a soft, pastel-colored robe, gently rocks back and forth in a cozy rocking chair positioned in the tranquil setting of a nursery. The dimly lit bedroom is adorned with whimsical mobiles dangling from the ceiling, casting shadows that dance on the walls. Her baby, swaddled in a delicate, patterned blanket, rests against her chest, the child's earlier cries now replaced by contented coos as the mother's soothing voice lulls the little one to sleep. The scent of lavender fills the air, adding to the serene atmosphere, while a warm, orange glow from a nearby nightlight illuminates the scene with a gentle hue, capturing a moment of tender love and comfort.</p>
426
- </td>
427
- <td style="width: 25%; vertical-align: top;">
428
- <video src="https://github.com/user-attachments/assets/926575ca-7150-435b-a0ff-4900a963297b" width="100%" controls autoplay loop></video>
429
- </td>
430
- </tr>
431
- </table>
432
- """)
433
-
434
- def generate(
435
- prompt,
436
- image_input,
437
- video_input,
438
- video_strength,
439
- seed_value,
440
- scale_status,
441
- rife_status,
442
- progress=gr.Progress(track_tqdm=True)
443
- ):
444
- latents, seed = infer(
445
- prompt,
446
- image_input,
447
- video_input,
448
- video_strength,
449
- num_inference_steps=50, # NOT Changed
450
- guidance_scale=7.0, # NOT Changed
451
- seed=seed_value,
452
- progress=progress,
453
- )
454
- if scale_status:
455
- latents = utils.upscale_batch_and_concatenate(upscale_model, latents, device)
456
- if rife_status:
457
- latents = rife_inference_with_latents(frame_interpolation_model, latents)
458
-
459
- batch_size = latents.shape[0]
460
- batch_video_frames = []
461
- for batch_idx in range(batch_size):
462
- pt_image = latents[batch_idx]
463
- pt_image = torch.stack([pt_image[i] for i in range(pt_image.shape[0])])
464
-
465
- image_np = VaeImageProcessor.pt_to_numpy(pt_image)
466
- image_pil = VaeImageProcessor.numpy_to_pil(image_np)
467
- batch_video_frames.append(image_pil)
468
-
469
- video_path = utils.save_video(batch_video_frames[0], fps=math.ceil((len(batch_video_frames[0]) - 1) / 6))
470
- video_update = gr.update(visible=True, value=video_path)
471
- gif_path = convert_to_gif(video_path)
472
- gif_update = gr.update(visible=True, value=gif_path)
473
- seed_update = gr.update(visible=True, value=seed)
474
-
475
- return video_path, video_update, gif_update, seed_update
476
-
477
- def enhance_prompt_func(prompt):
478
- return convert_prompt(prompt, retry_times=1)
479
-
480
- generate_button.click(
481
- generate,
482
- inputs=[prompt, image_input, video_input, strength, seed_param, enable_scale, enable_rife],
483
- outputs=[video_output, download_video_button, download_gif_button, seed_text],
484
- )
485
-
486
- enhance_button.click(enhance_prompt_func, inputs=[prompt], outputs=[prompt])
487
- video_input.upload(resize_if_unfit, inputs=[video_input], outputs=[video_input])
488
 
489
  if __name__ == "__main__":
490
- demo.queue(max_size=15)
491
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import torch
3
+ from transformers import AutoProcessor, Glm4vForConditionalGeneration, TextIteratorStreamer
4
+ from pathlib import Path
5
+ import threading
6
+ import re
7
+ import argparse
8
+ import copy
9
+ import spaces
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
+ MODEL_PATH = "/model/glm-4v-9b-0529"
 
 
 
12
 
 
 
13
 
14
+ class GLM4VModel:
15
+ def __init__(self):
16
+ self.processor = None
17
+ self.model = None
18
+ self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
19
 
20
+ def load(self):
21
+ self.processor = AutoProcessor.from_pretrained(MODEL_PATH, use_fast=True)
22
+ self.model = Glm4vForConditionalGeneration.from_pretrained(
23
+ MODEL_PATH,
24
+ torch_dtype=torch.bfloat16,
25
+ device_map=self.device,
26
+ attn_implementation="sdpa",
27
+ )
28
 
29
+ def _strip_html(self, t):
30
+ return re.sub(r"<[^>]+>", "", t).strip()
31
+
32
+ def _wrap_text(self, t):
33
+ return [{"type": "text", "text": t}]
34
+
35
+ def _files_to_content(self, media):
36
+ out = []
37
+ for f in media or []:
38
+ ext = Path(f.name).suffix.lower()
39
+ if ext in [".mp4", ".avi", ".mkv", ".mov", ".wmv", ".flv", ".webm", ".mpeg", ".m4v"]:
40
+ out.append({"type": "video", "url": f.name})
41
+ elif ext in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".webp"]:
42
+ out.append({"type": "image", "url": f.name})
43
+ return out
44
+
45
+ # -----------------------------------------------------------
46
+ # 🖼️ Output formatting
47
+ # -----------------------------------------------------------
48
+ def _format_output(self, txt):
49
+ """Called once完整生成结束时"""
50
+ think_pat, ans_pat = r"<think>(.*?)</think>", r"<answer>(.*?)</answer>"
51
+ think = re.findall(think_pat, txt, re.DOTALL)
52
+ ans = re.findall(ans_pat, txt, re.DOTALL)
53
+ html = ""
54
+ if think:
55
+ html += (
56
+ "<details open><summary style='cursor:pointer;font-weight:bold;color:#bbbbbb;'>💭 Thinking Process</summary>"
57
+ "<div style='color:#cccccc;line-height:1.4;'>"
58
+ + think[0].strip()
59
+ + "</div></details><br>"
60
+ )
61
+ body = ans[0] if ans else re.sub(think_pat, "", txt, flags=re.DOTALL)
62
+ html += f"<div style='color:#ffffff;'>{body.strip()}</div>"
63
+ return html
64
+
65
+ def _stream_fragment(self, buf: str) -> str:
66
+ think_html = ""
67
+ if "<think>" in buf:
68
+ if "</think>" in buf:
69
+ think_content = re.search(r"<think>(.*?)</think>", buf, re.DOTALL)
70
+ if think_content:
71
+ think_html = (
72
+ "<details open><summary style='cursor:pointer;font-weight:bold;color:#bbbbbb;'>💭 Thinking Process</summary>"
73
+ "<div style='color:#cccccc;line-height:1.4;'>"
74
+ + think_content.group(1).strip()
75
+ + "</div></details><br>"
76
+ )
77
+ else:
78
+ partial = buf.split("<think>", 1)[1]
79
+ think_html = (
80
+ "<details open><summary style='cursor:pointer;font-weight:bold;color:#bbbbbb;'>💭 Thinking Process</summary>"
81
+ "<div style='color:#cccccc;line-height:1.4;'>" + partial
82
+ )
83
 
84
+ answer_html = ""
85
+ if "<answer>" in buf:
86
+ if "</answer>" in buf:
87
+ ans_content = re.search(r"<answer>(.*?)</answer>", buf, re.DOTALL)
88
+ if ans_content:
89
+ answer_html = (
90
+ "<div style='color:#ffffff;'>" + ans_content.group(1).strip() + "</div>"
91
+ )
92
+ else:
93
+ partial = buf.split("<answer>", 1)[1]
94
+ answer_html = "<div style='color:#ffffff;'>" + partial
95
 
96
+ if not think_html and not answer_html:
97
+ return self._strip_html(buf)
98
 
99
+ return think_html + answer_html
 
100
 
101
+ def _build_messages(self, hist, sys_prompt):
102
+ msgs = []
103
 
104
+ if sys_prompt.strip():
105
+ msgs.append({
106
+ "role": "system",
107
+ "content": [{"type": "text", "text": sys_prompt.strip()}]
108
+ })
109
 
110
+ for h in hist:
111
+ if h["role"] == "user":
112
+ payload = h.get("file_info") or self._wrap_text(
113
+ self._strip_html(h["content"])
114
+ )
115
+ msgs.append({"role": "user", "content": payload})
116
+
117
+ else:
118
+ raw = h["content"]
119
+ raw = re.sub(r"<think>.*?</think>", "", raw, flags=re.DOTALL)
120
+ raw = re.sub(r"<details.*?</details>", "", raw, flags=re.DOTALL)
121
+ clean = self._strip_html(raw).strip()
122
+
123
+ msgs.append({"role": "assistant", "content": self._wrap_text(clean)})
124
+
125
+ return msgs
126
+
127
+ @spaces.GPU(duration=240)
128
+ def stream_generate(self, hist, sys_prompt):
129
+ msgs = self._build_messages(hist, sys_prompt)
130
+ print(msgs)
131
+ inputs = self.processor.apply_chat_template(
132
+ msgs,
133
+ tokenize=True,
134
+ add_generation_prompt=True,
135
+ return_dict=True,
136
+ return_tensors="pt",
137
+ padding=True,
138
+ ).to(self.device)
139
+
140
+ streamer = TextIteratorStreamer(
141
+ self.processor.tokenizer, skip_prompt=True, skip_special_tokens=False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
  )
143
+ gen_args = dict(
144
+ inputs,
145
+ max_new_tokens=8192,
146
+ repetition_penalty=1.1,
147
+ do_sample=True,
148
+ top_k=2,
149
+ temperature=None,
150
+ top_p=1e-5,
151
+ streamer=streamer,
152
+ )
153
+ threading.Thread(target=self.model.generate, kwargs=gen_args).start()
154
+
155
+ buf = ""
156
+ for tok in streamer:
157
+ buf += tok
158
+ yield self._stream_fragment(buf)
159
+ yield self._format_output(buf)
160
+
161
+
162
+ glm4v = GLM4VModel()
163
+ glm4v.load()
164
+
165
+
166
+ def check_files(files):
167
+ vids = imgs = 0
168
+ for f in files or []:
169
+ ext = Path(f.name).suffix.lower()
170
+ if ext in [".mp4", ".avi", ".mkv", ".mov", ".wmv", ".flv", ".webm", ".mpeg", ".m4v"]:
171
+ vids += 1
172
+ elif ext in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".webp"]:
173
+ imgs += 1
174
+ if vids > 1:
175
+ return False, "Only 1 video allowed"
176
+ if imgs > 10:
177
+ return False, "Max 10 images"
178
+ if vids and imgs:
179
+ return False, "Cannot mix video and images"
180
+ return True, ""
181
+
182
+
183
+ def chat(files, msg, hist, sys_prompt):
184
+ ok, err = check_files(files)
185
+ if not ok:
186
+ hist.append({"role": "assistant", "content": err})
187
+ yield copy.deepcopy(hist), None, ""
188
+ return
189
+
190
+ payload = glm4v._files_to_content(files) if files else None
191
+ if msg.strip():
192
+ if payload is None:
193
+ payload = glm4v._wrap_text(msg.strip())
194
+ else:
195
+ payload.append({"type": "text", "text": msg.strip()})
196
+
197
+ display = f"[{len(files)} file(s) uploaded]\n{msg}" if files else msg
198
+ user_rec = {"role": "user", "content": display}
199
+ if payload:
200
+ user_rec["file_info"] = payload
201
+ hist.append(user_rec)
202
+
203
+ place = {"role": "assistant", "content": ""}
204
+ hist.append(place)
205
+ yield copy.deepcopy(hist), None, ""
206
+
207
+ for chunk in glm4v.stream_generate(hist[:-1], sys_prompt):
208
+ place["content"] = chunk
209
+ yield copy.deepcopy(hist), None, ""
210
+ yield copy.deepcopy(hist), None, ""
211
+
212
+
213
+ def reset():
214
+ return [], None, ""
215
+
216
+
217
+ css = """.chatbot-container .message-wrap .message{font-size:14px!important}
218
+ details summary{cursor:pointer;font-weight:bold}
219
+ details[open] summary{margin-bottom:10px}"""
220
+
221
+ demo = gr.Blocks(title="GLM-4.1V Chat", theme=gr.themes.Soft(), css=css)
222
+ with demo:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223
  gr.Markdown("""
224
+ <div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
225
+ GLM-4.1V-9B Gradio Space🤗
226
+ </div>
227
+ <div style="text-align: center;">
228
+ <a href="https://huggingface.co/THUDM/GLM-4.1V-9B-Thinking">🤗 Model Hub</a> |
229
+ <a href="https://github.com/THUDM/CogVLM">🌐 Github</a> |
230
+ <a href="https://arxiv.org/abs/">📜 arxiv</a>
231
+ </div>
232
+ """)
 
 
 
 
 
 
 
 
 
 
233
  with gr.Row():
234
+ with gr.Column(scale=7):
235
+ chatbox = gr.Chatbot(
236
+ label="Conversation",
237
+ type="messages",
238
+ height=600,
239
+ elem_classes="chatbot-container",
240
+ )
241
+ textbox = gr.Textbox(label="💭 Message", lines=3)
 
 
242
  with gr.Row():
243
+ send = gr.Button("Send", variant="primary")
244
+ clear = gr.Button("Clear")
245
+ with gr.Column(scale=3):
246
+ up = gr.File(
247
+ label="📁 Upload",
248
+ file_count="multiple",
249
+ file_types=["image", "video"],
250
+ type="filepath",
251
+ )
252
+ gr.Markdown("""
253
+ <span style="color:red">Please upload the Bay image before entering text.</span>
254
+ """)
255
+ sys = gr.Textbox(label="⚙️ System Prompt", lines=6)
256
+
257
+ send.click(chat, inputs=[up, textbox, chatbox, sys], outputs=[chatbox, up, textbox])
258
+ textbox.submit(chat, inputs=[up, textbox, chatbox, sys], outputs=[chatbox, up, textbox])
259
+ clear.click(reset, outputs=[chatbox, up, textbox])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
260
 
261
  if __name__ == "__main__":
262
+ parser = argparse.ArgumentParser()
263
+ parser.add_argument("--port", type=int, default=8000)
264
+ parser.add_argument("--host", type=str, default="0.0.0.0")
265
+ parser.add_argument("--share", action="store_true")
266
+ args = parser.parse_args()
267
+
268
+ demo.launch(
269
+ server_port=args.port,
270
+ server_name=args.host,
271
+ share=args.share,
272
+ )
example_images/beach.png DELETED
Binary file (385 kB)
 
example_images/camping.png DELETED
Binary file (484 kB)
 
example_images/street.png DELETED
Binary file (478 kB)
 
example_videos/horse.mp4 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:3c857bbc0d197c0751db9d6da9b5c85eafd163511ff9b0e10be65adf8ef9e352
3
- size 453387
 
 
 
 
example_videos/kitten.mp4 DELETED
Binary file (882 kB)
 
example_videos/train_running.mp4 DELETED
Binary file (577 kB)
 
requirements.txt CHANGED
@@ -1,19 +1,4 @@
1
- spaces>=0.29.3
2
- safetensors>=0.4.5
3
- spandrel>=0.4.0
4
- tqdm>=4.66.5
5
- scikit-video>=1.1.11
6
- git+https://github.com/huggingface/diffusers.git@main
7
- transformers>=4.44.0
8
- accelerate>=0.34.2
9
- opencv-python>=4.10.0.84
10
- sentencepiece>=0.2.0
11
- numpy==1.26.0
12
- torch==2.2.0
13
- torchvision
14
- gradio>=4.44.0
15
- imageio>=2.34.2
16
- imageio-ffmpeg>=0.5.1
17
- openai>=1.45.0
18
- moviepy>=1.0.3
19
- pillow==9.5.0
 
1
+ git+https://github.com/huggingface/transformers.git@main
2
+ opencv-python>=4.11.0.86
3
+ gradio>=5.25.0
4
+ spaces>=0.37.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
rife/IFNet.py DELETED
@@ -1,123 +0,0 @@
1
- from .refine import *
2
-
3
-
4
- def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
5
- return nn.Sequential(
6
- torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1),
7
- nn.PReLU(out_planes),
8
- )
9
-
10
-
11
- def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
12
- return nn.Sequential(
13
- nn.Conv2d(
14
- in_planes,
15
- out_planes,
16
- kernel_size=kernel_size,
17
- stride=stride,
18
- padding=padding,
19
- dilation=dilation,
20
- bias=True,
21
- ),
22
- nn.PReLU(out_planes),
23
- )
24
-
25
-
26
- class IFBlock(nn.Module):
27
- def __init__(self, in_planes, c=64):
28
- super(IFBlock, self).__init__()
29
- self.conv0 = nn.Sequential(
30
- conv(in_planes, c // 2, 3, 2, 1),
31
- conv(c // 2, c, 3, 2, 1),
32
- )
33
- self.convblock = nn.Sequential(
34
- conv(c, c),
35
- conv(c, c),
36
- conv(c, c),
37
- conv(c, c),
38
- conv(c, c),
39
- conv(c, c),
40
- conv(c, c),
41
- conv(c, c),
42
- )
43
- self.lastconv = nn.ConvTranspose2d(c, 5, 4, 2, 1)
44
-
45
- def forward(self, x, flow, scale):
46
- if scale != 1:
47
- x = F.interpolate(x, scale_factor=1.0 / scale, mode="bilinear", align_corners=False)
48
- if flow != None:
49
- flow = F.interpolate(flow, scale_factor=1.0 / scale, mode="bilinear", align_corners=False) * 1.0 / scale
50
- x = torch.cat((x, flow), 1)
51
- x = self.conv0(x)
52
- x = self.convblock(x) + x
53
- tmp = self.lastconv(x)
54
- tmp = F.interpolate(tmp, scale_factor=scale * 2, mode="bilinear", align_corners=False)
55
- flow = tmp[:, :4] * scale * 2
56
- mask = tmp[:, 4:5]
57
- return flow, mask
58
-
59
-
60
- class IFNet(nn.Module):
61
- def __init__(self):
62
- super(IFNet, self).__init__()
63
- self.block0 = IFBlock(6, c=240)
64
- self.block1 = IFBlock(13 + 4, c=150)
65
- self.block2 = IFBlock(13 + 4, c=90)
66
- self.block_tea = IFBlock(16 + 4, c=90)
67
- self.contextnet = Contextnet()
68
- self.unet = Unet()
69
-
70
- def forward(self, x, scale=[4, 2, 1], timestep=0.5):
71
- img0 = x[:, :3]
72
- img1 = x[:, 3:6]
73
- gt = x[:, 6:] # In inference time, gt is None
74
- flow_list = []
75
- merged = []
76
- mask_list = []
77
- warped_img0 = img0
78
- warped_img1 = img1
79
- flow = None
80
- loss_distill = 0
81
- stu = [self.block0, self.block1, self.block2]
82
- for i in range(3):
83
- if flow != None:
84
- flow_d, mask_d = stu[i](
85
- torch.cat((img0, img1, warped_img0, warped_img1, mask), 1), flow, scale=scale[i]
86
- )
87
- flow = flow + flow_d
88
- mask = mask + mask_d
89
- else:
90
- flow, mask = stu[i](torch.cat((img0, img1), 1), None, scale=scale[i])
91
- mask_list.append(torch.sigmoid(mask))
92
- flow_list.append(flow)
93
- warped_img0 = warp(img0, flow[:, :2])
94
- warped_img1 = warp(img1, flow[:, 2:4])
95
- merged_student = (warped_img0, warped_img1)
96
- merged.append(merged_student)
97
- if gt.shape[1] == 3:
98
- flow_d, mask_d = self.block_tea(
99
- torch.cat((img0, img1, warped_img0, warped_img1, mask, gt), 1), flow, scale=1
100
- )
101
- flow_teacher = flow + flow_d
102
- warped_img0_teacher = warp(img0, flow_teacher[:, :2])
103
- warped_img1_teacher = warp(img1, flow_teacher[:, 2:4])
104
- mask_teacher = torch.sigmoid(mask + mask_d)
105
- merged_teacher = warped_img0_teacher * mask_teacher + warped_img1_teacher * (1 - mask_teacher)
106
- else:
107
- flow_teacher = None
108
- merged_teacher = None
109
- for i in range(3):
110
- merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i])
111
- if gt.shape[1] == 3:
112
- loss_mask = (
113
- ((merged[i] - gt).abs().mean(1, True) > (merged_teacher - gt).abs().mean(1, True) + 0.01)
114
- .float()
115
- .detach()
116
- )
117
- loss_distill += (((flow_teacher.detach() - flow_list[i]) ** 2).mean(1, True) ** 0.5 * loss_mask).mean()
118
- c0 = self.contextnet(img0, flow[:, :2])
119
- c1 = self.contextnet(img1, flow[:, 2:4])
120
- tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
121
- res = tmp[:, :3] * 2 - 1
122
- merged[2] = torch.clamp(merged[2] + res, 0, 1)
123
- return flow_list, mask_list[2], merged, flow_teacher, merged_teacher, loss_distill
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
rife/IFNet_2R.py DELETED
@@ -1,123 +0,0 @@
1
- from .refine_2R import *
2
-
3
-
4
- def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
5
- return nn.Sequential(
6
- torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1),
7
- nn.PReLU(out_planes),
8
- )
9
-
10
-
11
- def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
12
- return nn.Sequential(
13
- nn.Conv2d(
14
- in_planes,
15
- out_planes,
16
- kernel_size=kernel_size,
17
- stride=stride,
18
- padding=padding,
19
- dilation=dilation,
20
- bias=True,
21
- ),
22
- nn.PReLU(out_planes),
23
- )
24
-
25
-
26
- class IFBlock(nn.Module):
27
- def __init__(self, in_planes, c=64):
28
- super(IFBlock, self).__init__()
29
- self.conv0 = nn.Sequential(
30
- conv(in_planes, c // 2, 3, 1, 1),
31
- conv(c // 2, c, 3, 2, 1),
32
- )
33
- self.convblock = nn.Sequential(
34
- conv(c, c),
35
- conv(c, c),
36
- conv(c, c),
37
- conv(c, c),
38
- conv(c, c),
39
- conv(c, c),
40
- conv(c, c),
41
- conv(c, c),
42
- )
43
- self.lastconv = nn.ConvTranspose2d(c, 5, 4, 2, 1)
44
-
45
- def forward(self, x, flow, scale):
46
- if scale != 1:
47
- x = F.interpolate(x, scale_factor=1.0 / scale, mode="bilinear", align_corners=False)
48
- if flow != None:
49
- flow = F.interpolate(flow, scale_factor=1.0 / scale, mode="bilinear", align_corners=False) * 1.0 / scale
50
- x = torch.cat((x, flow), 1)
51
- x = self.conv0(x)
52
- x = self.convblock(x) + x
53
- tmp = self.lastconv(x)
54
- tmp = F.interpolate(tmp, scale_factor=scale, mode="bilinear", align_corners=False)
55
- flow = tmp[:, :4] * scale
56
- mask = tmp[:, 4:5]
57
- return flow, mask
58
-
59
-
60
- class IFNet(nn.Module):
61
- def __init__(self):
62
- super(IFNet, self).__init__()
63
- self.block0 = IFBlock(6, c=240)
64
- self.block1 = IFBlock(13 + 4, c=150)
65
- self.block2 = IFBlock(13 + 4, c=90)
66
- self.block_tea = IFBlock(16 + 4, c=90)
67
- self.contextnet = Contextnet()
68
- self.unet = Unet()
69
-
70
- def forward(self, x, scale=[4, 2, 1], timestep=0.5):
71
- img0 = x[:, :3]
72
- img1 = x[:, 3:6]
73
- gt = x[:, 6:] # In inference time, gt is None
74
- flow_list = []
75
- merged = []
76
- mask_list = []
77
- warped_img0 = img0
78
- warped_img1 = img1
79
- flow = None
80
- loss_distill = 0
81
- stu = [self.block0, self.block1, self.block2]
82
- for i in range(3):
83
- if flow != None:
84
- flow_d, mask_d = stu[i](
85
- torch.cat((img0, img1, warped_img0, warped_img1, mask), 1), flow, scale=scale[i]
86
- )
87
- flow = flow + flow_d
88
- mask = mask + mask_d
89
- else:
90
- flow, mask = stu[i](torch.cat((img0, img1), 1), None, scale=scale[i])
91
- mask_list.append(torch.sigmoid(mask))
92
- flow_list.append(flow)
93
- warped_img0 = warp(img0, flow[:, :2])
94
- warped_img1 = warp(img1, flow[:, 2:4])
95
- merged_student = (warped_img0, warped_img1)
96
- merged.append(merged_student)
97
- if gt.shape[1] == 3:
98
- flow_d, mask_d = self.block_tea(
99
- torch.cat((img0, img1, warped_img0, warped_img1, mask, gt), 1), flow, scale=1
100
- )
101
- flow_teacher = flow + flow_d
102
- warped_img0_teacher = warp(img0, flow_teacher[:, :2])
103
- warped_img1_teacher = warp(img1, flow_teacher[:, 2:4])
104
- mask_teacher = torch.sigmoid(mask + mask_d)
105
- merged_teacher = warped_img0_teacher * mask_teacher + warped_img1_teacher * (1 - mask_teacher)
106
- else:
107
- flow_teacher = None
108
- merged_teacher = None
109
- for i in range(3):
110
- merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i])
111
- if gt.shape[1] == 3:
112
- loss_mask = (
113
- ((merged[i] - gt).abs().mean(1, True) > (merged_teacher - gt).abs().mean(1, True) + 0.01)
114
- .float()
115
- .detach()
116
- )
117
- loss_distill += (((flow_teacher.detach() - flow_list[i]) ** 2).mean(1, True) ** 0.5 * loss_mask).mean()
118
- c0 = self.contextnet(img0, flow[:, :2])
119
- c1 = self.contextnet(img1, flow[:, 2:4])
120
- tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
121
- res = tmp[:, :3] * 2 - 1
122
- merged[2] = torch.clamp(merged[2] + res, 0, 1)
123
- return flow_list, mask_list[2], merged, flow_teacher, merged_teacher, loss_distill
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
rife/IFNet_HDv3.py DELETED
@@ -1,138 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import torch.nn.functional as F
4
- from .warplayer import warp
5
-
6
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
7
-
8
-
9
- def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
10
- return nn.Sequential(
11
- nn.Conv2d(
12
- in_planes,
13
- out_planes,
14
- kernel_size=kernel_size,
15
- stride=stride,
16
- padding=padding,
17
- dilation=dilation,
18
- bias=True,
19
- ),
20
- nn.PReLU(out_planes),
21
- )
22
-
23
-
24
- def conv_bn(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
25
- return nn.Sequential(
26
- nn.Conv2d(
27
- in_planes,
28
- out_planes,
29
- kernel_size=kernel_size,
30
- stride=stride,
31
- padding=padding,
32
- dilation=dilation,
33
- bias=False,
34
- ),
35
- nn.BatchNorm2d(out_planes),
36
- nn.PReLU(out_planes),
37
- )
38
-
39
-
40
- class IFBlock(nn.Module):
41
- def __init__(self, in_planes, c=64):
42
- super(IFBlock, self).__init__()
43
- self.conv0 = nn.Sequential(
44
- conv(in_planes, c // 2, 3, 2, 1),
45
- conv(c // 2, c, 3, 2, 1),
46
- )
47
- self.convblock0 = nn.Sequential(conv(c, c), conv(c, c))
48
- self.convblock1 = nn.Sequential(conv(c, c), conv(c, c))
49
- self.convblock2 = nn.Sequential(conv(c, c), conv(c, c))
50
- self.convblock3 = nn.Sequential(conv(c, c), conv(c, c))
51
- self.conv1 = nn.Sequential(
52
- nn.ConvTranspose2d(c, c // 2, 4, 2, 1),
53
- nn.PReLU(c // 2),
54
- nn.ConvTranspose2d(c // 2, 4, 4, 2, 1),
55
- )
56
- self.conv2 = nn.Sequential(
57
- nn.ConvTranspose2d(c, c // 2, 4, 2, 1),
58
- nn.PReLU(c // 2),
59
- nn.ConvTranspose2d(c // 2, 1, 4, 2, 1),
60
- )
61
-
62
- def forward(self, x, flow, scale=1):
63
- x = F.interpolate(
64
- x, scale_factor=1.0 / scale, mode="bilinear", align_corners=False, recompute_scale_factor=False
65
- )
66
- flow = (
67
- F.interpolate(
68
- flow, scale_factor=1.0 / scale, mode="bilinear", align_corners=False, recompute_scale_factor=False
69
- )
70
- * 1.0
71
- / scale
72
- )
73
- feat = self.conv0(torch.cat((x, flow), 1))
74
- feat = self.convblock0(feat) + feat
75
- feat = self.convblock1(feat) + feat
76
- feat = self.convblock2(feat) + feat
77
- feat = self.convblock3(feat) + feat
78
- flow = self.conv1(feat)
79
- mask = self.conv2(feat)
80
- flow = (
81
- F.interpolate(flow, scale_factor=scale, mode="bilinear", align_corners=False, recompute_scale_factor=False)
82
- * scale
83
- )
84
- mask = F.interpolate(
85
- mask, scale_factor=scale, mode="bilinear", align_corners=False, recompute_scale_factor=False
86
- )
87
- return flow, mask
88
-
89
-
90
- class IFNet(nn.Module):
91
- def __init__(self):
92
- super(IFNet, self).__init__()
93
- self.block0 = IFBlock(7 + 4, c=90)
94
- self.block1 = IFBlock(7 + 4, c=90)
95
- self.block2 = IFBlock(7 + 4, c=90)
96
- self.block_tea = IFBlock(10 + 4, c=90)
97
- # self.contextnet = Contextnet()
98
- # self.unet = Unet()
99
-
100
- def forward(self, x, scale_list=[4, 2, 1], training=False):
101
- if training == False:
102
- channel = x.shape[1] // 2
103
- img0 = x[:, :channel]
104
- img1 = x[:, channel:]
105
- flow_list = []
106
- merged = []
107
- mask_list = []
108
- warped_img0 = img0
109
- warped_img1 = img1
110
- flow = (x[:, :4]).detach() * 0
111
- mask = (x[:, :1]).detach() * 0
112
- loss_cons = 0
113
- block = [self.block0, self.block1, self.block2]
114
- for i in range(3):
115
- f0, m0 = block[i](torch.cat((warped_img0[:, :3], warped_img1[:, :3], mask), 1), flow, scale=scale_list[i])
116
- f1, m1 = block[i](
117
- torch.cat((warped_img1[:, :3], warped_img0[:, :3], -mask), 1),
118
- torch.cat((flow[:, 2:4], flow[:, :2]), 1),
119
- scale=scale_list[i],
120
- )
121
- flow = flow + (f0 + torch.cat((f1[:, 2:4], f1[:, :2]), 1)) / 2
122
- mask = mask + (m0 + (-m1)) / 2
123
- mask_list.append(mask)
124
- flow_list.append(flow)
125
- warped_img0 = warp(img0, flow[:, :2])
126
- warped_img1 = warp(img1, flow[:, 2:4])
127
- merged.append((warped_img0, warped_img1))
128
- """
129
- c0 = self.contextnet(img0, flow[:, :2])
130
- c1 = self.contextnet(img1, flow[:, 2:4])
131
- tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
132
- res = tmp[:, 1:4] * 2 - 1
133
- """
134
- for i in range(3):
135
- mask_list[i] = torch.sigmoid(mask_list[i])
136
- merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i])
137
- # merged[i] = torch.clamp(merged[i] + res, 0, 1)
138
- return flow_list, mask_list[2], merged
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
rife/IFNet_m.py DELETED
@@ -1,127 +0,0 @@
1
- from .refine import *
2
-
3
-
4
- def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
5
- return nn.Sequential(
6
- torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1),
7
- nn.PReLU(out_planes),
8
- )
9
-
10
-
11
- def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
12
- return nn.Sequential(
13
- nn.Conv2d(
14
- in_planes,
15
- out_planes,
16
- kernel_size=kernel_size,
17
- stride=stride,
18
- padding=padding,
19
- dilation=dilation,
20
- bias=True,
21
- ),
22
- nn.PReLU(out_planes),
23
- )
24
-
25
-
26
- class IFBlock(nn.Module):
27
- def __init__(self, in_planes, c=64):
28
- super(IFBlock, self).__init__()
29
- self.conv0 = nn.Sequential(
30
- conv(in_planes, c // 2, 3, 2, 1),
31
- conv(c // 2, c, 3, 2, 1),
32
- )
33
- self.convblock = nn.Sequential(
34
- conv(c, c),
35
- conv(c, c),
36
- conv(c, c),
37
- conv(c, c),
38
- conv(c, c),
39
- conv(c, c),
40
- conv(c, c),
41
- conv(c, c),
42
- )
43
- self.lastconv = nn.ConvTranspose2d(c, 5, 4, 2, 1)
44
-
45
- def forward(self, x, flow, scale):
46
- if scale != 1:
47
- x = F.interpolate(x, scale_factor=1.0 / scale, mode="bilinear", align_corners=False)
48
- if flow != None:
49
- flow = F.interpolate(flow, scale_factor=1.0 / scale, mode="bilinear", align_corners=False) * 1.0 / scale
50
- x = torch.cat((x, flow), 1)
51
- x = self.conv0(x)
52
- x = self.convblock(x) + x
53
- tmp = self.lastconv(x)
54
- tmp = F.interpolate(tmp, scale_factor=scale * 2, mode="bilinear", align_corners=False)
55
- flow = tmp[:, :4] * scale * 2
56
- mask = tmp[:, 4:5]
57
- return flow, mask
58
-
59
-
60
- class IFNet_m(nn.Module):
61
- def __init__(self):
62
- super(IFNet_m, self).__init__()
63
- self.block0 = IFBlock(6 + 1, c=240)
64
- self.block1 = IFBlock(13 + 4 + 1, c=150)
65
- self.block2 = IFBlock(13 + 4 + 1, c=90)
66
- self.block_tea = IFBlock(16 + 4 + 1, c=90)
67
- self.contextnet = Contextnet()
68
- self.unet = Unet()
69
-
70
- def forward(self, x, scale=[4, 2, 1], timestep=0.5, returnflow=False):
71
- timestep = (x[:, :1].clone() * 0 + 1) * timestep
72
- img0 = x[:, :3]
73
- img1 = x[:, 3:6]
74
- gt = x[:, 6:] # In inference time, gt is None
75
- flow_list = []
76
- merged = []
77
- mask_list = []
78
- warped_img0 = img0
79
- warped_img1 = img1
80
- flow = None
81
- loss_distill = 0
82
- stu = [self.block0, self.block1, self.block2]
83
- for i in range(3):
84
- if flow != None:
85
- flow_d, mask_d = stu[i](
86
- torch.cat((img0, img1, timestep, warped_img0, warped_img1, mask), 1), flow, scale=scale[i]
87
- )
88
- flow = flow + flow_d
89
- mask = mask + mask_d
90
- else:
91
- flow, mask = stu[i](torch.cat((img0, img1, timestep), 1), None, scale=scale[i])
92
- mask_list.append(torch.sigmoid(mask))
93
- flow_list.append(flow)
94
- warped_img0 = warp(img0, flow[:, :2])
95
- warped_img1 = warp(img1, flow[:, 2:4])
96
- merged_student = (warped_img0, warped_img1)
97
- merged.append(merged_student)
98
- if gt.shape[1] == 3:
99
- flow_d, mask_d = self.block_tea(
100
- torch.cat((img0, img1, timestep, warped_img0, warped_img1, mask, gt), 1), flow, scale=1
101
- )
102
- flow_teacher = flow + flow_d
103
- warped_img0_teacher = warp(img0, flow_teacher[:, :2])
104
- warped_img1_teacher = warp(img1, flow_teacher[:, 2:4])
105
- mask_teacher = torch.sigmoid(mask + mask_d)
106
- merged_teacher = warped_img0_teacher * mask_teacher + warped_img1_teacher * (1 - mask_teacher)
107
- else:
108
- flow_teacher = None
109
- merged_teacher = None
110
- for i in range(3):
111
- merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i])
112
- if gt.shape[1] == 3:
113
- loss_mask = (
114
- ((merged[i] - gt).abs().mean(1, True) > (merged_teacher - gt).abs().mean(1, True) + 0.01)
115
- .float()
116
- .detach()
117
- )
118
- loss_distill += (((flow_teacher.detach() - flow_list[i]) ** 2).mean(1, True) ** 0.5 * loss_mask).mean()
119
- if returnflow:
120
- return flow
121
- else:
122
- c0 = self.contextnet(img0, flow[:, :2])
123
- c1 = self.contextnet(img1, flow[:, 2:4])
124
- tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
125
- res = tmp[:, :3] * 2 - 1
126
- merged[2] = torch.clamp(merged[2] + res, 0, 1)
127
- return flow_list, mask_list[2], merged, flow_teacher, merged_teacher, loss_distill
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
rife/RIFE.py DELETED
@@ -1,95 +0,0 @@
1
- from torch.optim import AdamW
2
- from torch.nn.parallel import DistributedDataParallel as DDP
3
- from .IFNet import *
4
- from .IFNet_m import *
5
- from .loss import *
6
- from .laplacian import *
7
- from .refine import *
8
-
9
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
10
-
11
-
12
- class Model:
13
- def __init__(self, local_rank=-1, arbitrary=False):
14
- if arbitrary == True:
15
- self.flownet = IFNet_m()
16
- else:
17
- self.flownet = IFNet()
18
- self.device()
19
- self.optimG = AdamW(
20
- self.flownet.parameters(), lr=1e-6, weight_decay=1e-3
21
- ) # use large weight decay may avoid NaN loss
22
- self.epe = EPE()
23
- self.lap = LapLoss()
24
- self.sobel = SOBEL()
25
- if local_rank != -1:
26
- self.flownet = DDP(self.flownet, device_ids=[local_rank], output_device=local_rank)
27
-
28
- def train(self):
29
- self.flownet.train()
30
-
31
- def eval(self):
32
- self.flownet.eval()
33
-
34
- def device(self):
35
- self.flownet.to(device)
36
-
37
- def load_model(self, path, rank=0):
38
- def convert(param):
39
- return {k.replace("module.", ""): v for k, v in param.items() if "module." in k}
40
-
41
- if rank <= 0:
42
- self.flownet.load_state_dict(convert(torch.load("{}/flownet.pkl".format(path))))
43
-
44
- def save_model(self, path, rank=0):
45
- if rank == 0:
46
- torch.save(self.flownet.state_dict(), "{}/flownet.pkl".format(path))
47
-
48
- def inference(self, img0, img1, scale=1, scale_list=[4, 2, 1], TTA=False, timestep=0.5):
49
- for i in range(3):
50
- scale_list[i] = scale_list[i] * 1.0 / scale
51
- imgs = torch.cat((img0, img1), 1)
52
- flow, mask, merged, flow_teacher, merged_teacher, loss_distill = self.flownet(
53
- imgs, scale_list, timestep=timestep
54
- )
55
- if TTA == False:
56
- return merged[2]
57
- else:
58
- flow2, mask2, merged2, flow_teacher2, merged_teacher2, loss_distill2 = self.flownet(
59
- imgs.flip(2).flip(3), scale_list, timestep=timestep
60
- )
61
- return (merged[2] + merged2[2].flip(2).flip(3)) / 2
62
-
63
- def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None):
64
- for param_group in self.optimG.param_groups:
65
- param_group["lr"] = learning_rate
66
- img0 = imgs[:, :3]
67
- img1 = imgs[:, 3:]
68
- if training:
69
- self.train()
70
- else:
71
- self.eval()
72
- flow, mask, merged, flow_teacher, merged_teacher, loss_distill = self.flownet(
73
- torch.cat((imgs, gt), 1), scale=[4, 2, 1]
74
- )
75
- loss_l1 = (self.lap(merged[2], gt)).mean()
76
- loss_tea = (self.lap(merged_teacher, gt)).mean()
77
- if training:
78
- self.optimG.zero_grad()
79
- loss_G = (
80
- loss_l1 + loss_tea + loss_distill * 0.01
81
- ) # when training RIFEm, the weight of loss_distill should be 0.005 or 0.002
82
- loss_G.backward()
83
- self.optimG.step()
84
- else:
85
- flow_teacher = flow[2]
86
- return merged[2], {
87
- "merged_tea": merged_teacher,
88
- "mask": mask,
89
- "mask_tea": mask,
90
- "flow": flow[2][:, :2],
91
- "flow_tea": flow_teacher,
92
- "loss_l1": loss_l1,
93
- "loss_tea": loss_tea,
94
- "loss_distill": loss_distill,
95
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
rife/RIFE_HDv3.py DELETED
@@ -1,86 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import numpy as np
4
- from torch.optim import AdamW
5
- import torch.optim as optim
6
- import itertools
7
- from .warplayer import warp
8
- from torch.nn.parallel import DistributedDataParallel as DDP
9
- from .IFNet_HDv3 import *
10
- import torch.nn.functional as F
11
- from .loss import *
12
-
13
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
14
-
15
-
16
- class Model:
17
- def __init__(self, local_rank=-1):
18
- self.flownet = IFNet()
19
- self.device()
20
- self.optimG = AdamW(self.flownet.parameters(), lr=1e-6, weight_decay=1e-4)
21
- self.epe = EPE()
22
- # self.vgg = VGGPerceptualLoss().to(device)
23
- self.sobel = SOBEL()
24
- if local_rank != -1:
25
- self.flownet = DDP(self.flownet, device_ids=[local_rank], output_device=local_rank)
26
-
27
- def train(self):
28
- self.flownet.train()
29
-
30
- def eval(self):
31
- self.flownet.eval()
32
-
33
- def device(self):
34
- self.flownet.to(device)
35
-
36
- def load_model(self, path, rank=0):
37
- def convert(param):
38
- if rank == -1:
39
- return {k.replace("module.", ""): v for k, v in param.items() if "module." in k}
40
- else:
41
- return param
42
-
43
- if rank <= 0:
44
- if torch.cuda.is_available():
45
- self.flownet.load_state_dict(convert(torch.load("{}/flownet.pkl".format(path))))
46
- else:
47
- self.flownet.load_state_dict(convert(torch.load("{}/flownet.pkl".format(path), map_location="cpu")))
48
-
49
- def save_model(self, path, rank=0):
50
- if rank == 0:
51
- torch.save(self.flownet.state_dict(), "{}/flownet.pkl".format(path))
52
-
53
- def inference(self, img0, img1, scale=1.0):
54
- imgs = torch.cat((img0, img1), 1)
55
- scale_list = [4 / scale, 2 / scale, 1 / scale]
56
- flow, mask, merged = self.flownet(imgs, scale_list)
57
- return merged[2]
58
-
59
- def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None):
60
- for param_group in self.optimG.param_groups:
61
- param_group["lr"] = learning_rate
62
- img0 = imgs[:, :3]
63
- img1 = imgs[:, 3:]
64
- if training:
65
- self.train()
66
- else:
67
- self.eval()
68
- scale = [4, 2, 1]
69
- flow, mask, merged = self.flownet(torch.cat((imgs, gt), 1), scale=scale, training=training)
70
- loss_l1 = (merged[2] - gt).abs().mean()
71
- loss_smooth = self.sobel(flow[2], flow[2] * 0).mean()
72
- # loss_vgg = self.vgg(merged[2], gt)
73
- if training:
74
- self.optimG.zero_grad()
75
- loss_G = loss_cons + loss_smooth * 0.1
76
- loss_G.backward()
77
- self.optimG.step()
78
- else:
79
- flow_teacher = flow[2]
80
- return merged[2], {
81
- "mask": mask,
82
- "flow": flow[2][:, :2],
83
- "loss_l1": loss_l1,
84
- "loss_cons": loss_cons,
85
- "loss_smooth": loss_smooth,
86
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
rife/__init__.py DELETED
File without changes
rife/laplacian.py DELETED
@@ -1,69 +0,0 @@
1
- import torch
2
- import numpy as np
3
- import torch.nn as nn
4
- import torch.nn.functional as F
5
-
6
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
7
-
8
- import torch
9
-
10
-
11
- def gauss_kernel(size=5, channels=3):
12
- kernel = torch.tensor(
13
- [
14
- [1.0, 4.0, 6.0, 4.0, 1],
15
- [4.0, 16.0, 24.0, 16.0, 4.0],
16
- [6.0, 24.0, 36.0, 24.0, 6.0],
17
- [4.0, 16.0, 24.0, 16.0, 4.0],
18
- [1.0, 4.0, 6.0, 4.0, 1.0],
19
- ]
20
- )
21
- kernel /= 256.0
22
- kernel = kernel.repeat(channels, 1, 1, 1)
23
- kernel = kernel.to(device)
24
- return kernel
25
-
26
-
27
- def downsample(x):
28
- return x[:, :, ::2, ::2]
29
-
30
-
31
- def upsample(x):
32
- cc = torch.cat([x, torch.zeros(x.shape[0], x.shape[1], x.shape[2], x.shape[3]).to(device)], dim=3)
33
- cc = cc.view(x.shape[0], x.shape[1], x.shape[2] * 2, x.shape[3])
34
- cc = cc.permute(0, 1, 3, 2)
35
- cc = torch.cat([cc, torch.zeros(x.shape[0], x.shape[1], x.shape[3], x.shape[2] * 2).to(device)], dim=3)
36
- cc = cc.view(x.shape[0], x.shape[1], x.shape[3] * 2, x.shape[2] * 2)
37
- x_up = cc.permute(0, 1, 3, 2)
38
- return conv_gauss(x_up, 4 * gauss_kernel(channels=x.shape[1]))
39
-
40
-
41
- def conv_gauss(img, kernel):
42
- img = torch.nn.functional.pad(img, (2, 2, 2, 2), mode="reflect")
43
- out = torch.nn.functional.conv2d(img, kernel, groups=img.shape[1])
44
- return out
45
-
46
-
47
- def laplacian_pyramid(img, kernel, max_levels=3):
48
- current = img
49
- pyr = []
50
- for level in range(max_levels):
51
- filtered = conv_gauss(current, kernel)
52
- down = downsample(filtered)
53
- up = upsample(down)
54
- diff = current - up
55
- pyr.append(diff)
56
- current = down
57
- return pyr
58
-
59
-
60
- class LapLoss(torch.nn.Module):
61
- def __init__(self, max_levels=5, channels=3):
62
- super(LapLoss, self).__init__()
63
- self.max_levels = max_levels
64
- self.gauss_kernel = gauss_kernel(channels=channels)
65
-
66
- def forward(self, input, target):
67
- pyr_input = laplacian_pyramid(img=input, kernel=self.gauss_kernel, max_levels=self.max_levels)
68
- pyr_target = laplacian_pyramid(img=target, kernel=self.gauss_kernel, max_levels=self.max_levels)
69
- return sum(torch.nn.functional.l1_loss(a, b) for a, b in zip(pyr_input, pyr_target))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
rife/loss.py DELETED
@@ -1,130 +0,0 @@
1
- import torch
2
- import numpy as np
3
- import torch.nn as nn
4
- import torch.nn.functional as F
5
- import torchvision.models as models
6
-
7
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
8
-
9
-
10
- class EPE(nn.Module):
11
- def __init__(self):
12
- super(EPE, self).__init__()
13
-
14
- def forward(self, flow, gt, loss_mask):
15
- loss_map = (flow - gt.detach()) ** 2
16
- loss_map = (loss_map.sum(1, True) + 1e-6) ** 0.5
17
- return loss_map * loss_mask
18
-
19
-
20
- class Ternary(nn.Module):
21
- def __init__(self):
22
- super(Ternary, self).__init__()
23
- patch_size = 7
24
- out_channels = patch_size * patch_size
25
- self.w = np.eye(out_channels).reshape((patch_size, patch_size, 1, out_channels))
26
- self.w = np.transpose(self.w, (3, 2, 0, 1))
27
- self.w = torch.tensor(self.w).float().to(device)
28
-
29
- def transform(self, img):
30
- patches = F.conv2d(img, self.w, padding=3, bias=None)
31
- transf = patches - img
32
- transf_norm = transf / torch.sqrt(0.81 + transf**2)
33
- return transf_norm
34
-
35
- def rgb2gray(self, rgb):
36
- r, g, b = rgb[:, 0:1, :, :], rgb[:, 1:2, :, :], rgb[:, 2:3, :, :]
37
- gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
38
- return gray
39
-
40
- def hamming(self, t1, t2):
41
- dist = (t1 - t2) ** 2
42
- dist_norm = torch.mean(dist / (0.1 + dist), 1, True)
43
- return dist_norm
44
-
45
- def valid_mask(self, t, padding):
46
- n, _, h, w = t.size()
47
- inner = torch.ones(n, 1, h - 2 * padding, w - 2 * padding).type_as(t)
48
- mask = F.pad(inner, [padding] * 4)
49
- return mask
50
-
51
- def forward(self, img0, img1):
52
- img0 = self.transform(self.rgb2gray(img0))
53
- img1 = self.transform(self.rgb2gray(img1))
54
- return self.hamming(img0, img1) * self.valid_mask(img0, 1)
55
-
56
-
57
- class SOBEL(nn.Module):
58
- def __init__(self):
59
- super(SOBEL, self).__init__()
60
- self.kernelX = torch.tensor(
61
- [
62
- [1, 0, -1],
63
- [2, 0, -2],
64
- [1, 0, -1],
65
- ]
66
- ).float()
67
- self.kernelY = self.kernelX.clone().T
68
- self.kernelX = self.kernelX.unsqueeze(0).unsqueeze(0).to(device)
69
- self.kernelY = self.kernelY.unsqueeze(0).unsqueeze(0).to(device)
70
-
71
- def forward(self, pred, gt):
72
- N, C, H, W = pred.shape[0], pred.shape[1], pred.shape[2], pred.shape[3]
73
- img_stack = torch.cat([pred.reshape(N * C, 1, H, W), gt.reshape(N * C, 1, H, W)], 0)
74
- sobel_stack_x = F.conv2d(img_stack, self.kernelX, padding=1)
75
- sobel_stack_y = F.conv2d(img_stack, self.kernelY, padding=1)
76
- pred_X, gt_X = sobel_stack_x[: N * C], sobel_stack_x[N * C :]
77
- pred_Y, gt_Y = sobel_stack_y[: N * C], sobel_stack_y[N * C :]
78
-
79
- L1X, L1Y = torch.abs(pred_X - gt_X), torch.abs(pred_Y - gt_Y)
80
- loss = L1X + L1Y
81
- return loss
82
-
83
-
84
- class MeanShift(nn.Conv2d):
85
- def __init__(self, data_mean, data_std, data_range=1, norm=True):
86
- c = len(data_mean)
87
- super(MeanShift, self).__init__(c, c, kernel_size=1)
88
- std = torch.Tensor(data_std)
89
- self.weight.data = torch.eye(c).view(c, c, 1, 1)
90
- if norm:
91
- self.weight.data.div_(std.view(c, 1, 1, 1))
92
- self.bias.data = -1 * data_range * torch.Tensor(data_mean)
93
- self.bias.data.div_(std)
94
- else:
95
- self.weight.data.mul_(std.view(c, 1, 1, 1))
96
- self.bias.data = data_range * torch.Tensor(data_mean)
97
- self.requires_grad = False
98
-
99
-
100
- class VGGPerceptualLoss(torch.nn.Module):
101
- def __init__(self, rank=0):
102
- super(VGGPerceptualLoss, self).__init__()
103
- blocks = []
104
- pretrained = True
105
- self.vgg_pretrained_features = models.vgg19(pretrained=pretrained).features
106
- self.normalize = MeanShift([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], norm=True).cuda()
107
- for param in self.parameters():
108
- param.requires_grad = False
109
-
110
- def forward(self, X, Y, indices=None):
111
- X = self.normalize(X)
112
- Y = self.normalize(Y)
113
- indices = [2, 7, 12, 21, 30]
114
- weights = [1.0 / 2.6, 1.0 / 4.8, 1.0 / 3.7, 1.0 / 5.6, 10 / 1.5]
115
- k = 0
116
- loss = 0
117
- for i in range(indices[-1]):
118
- X = self.vgg_pretrained_features[i](X)
119
- Y = self.vgg_pretrained_features[i](Y)
120
- if (i + 1) in indices:
121
- loss += weights[k] * (X - Y.detach()).abs().mean() * 0.1
122
- k += 1
123
- return loss
124
-
125
-
126
- if __name__ == "__main__":
127
- img0 = torch.zeros(3, 3, 256, 256).float().to(device)
128
- img1 = torch.tensor(np.random.normal(0, 1, (3, 3, 256, 256))).float().to(device)
129
- ternary_loss = Ternary()
130
- print(ternary_loss(img0, img1).shape)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
rife/pytorch_msssim/__init__.py DELETED
@@ -1,203 +0,0 @@
1
- import torch
2
- import torch.nn.functional as F
3
- from math import exp
4
- import numpy as np
5
-
6
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
7
-
8
-
9
- def gaussian(window_size, sigma):
10
- gauss = torch.Tensor([exp(-((x - window_size // 2) ** 2) / float(2 * sigma**2)) for x in range(window_size)])
11
- return gauss / gauss.sum()
12
-
13
-
14
- def create_window(window_size, channel=1):
15
- _1D_window = gaussian(window_size, 1.5).unsqueeze(1)
16
- _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0).to(device)
17
- window = _2D_window.expand(channel, 1, window_size, window_size).contiguous()
18
- return window
19
-
20
-
21
- def create_window_3d(window_size, channel=1):
22
- _1D_window = gaussian(window_size, 1.5).unsqueeze(1)
23
- _2D_window = _1D_window.mm(_1D_window.t())
24
- _3D_window = _2D_window.unsqueeze(2) @ (_1D_window.t())
25
- window = _3D_window.expand(1, channel, window_size, window_size, window_size).contiguous().to(device)
26
- return window
27
-
28
-
29
- def ssim(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None):
30
- # Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh).
31
- if val_range is None:
32
- if torch.max(img1) > 128:
33
- max_val = 255
34
- else:
35
- max_val = 1
36
-
37
- if torch.min(img1) < -0.5:
38
- min_val = -1
39
- else:
40
- min_val = 0
41
- L = max_val - min_val
42
- else:
43
- L = val_range
44
-
45
- padd = 0
46
- (_, channel, height, width) = img1.size()
47
- if window is None:
48
- real_size = min(window_size, height, width)
49
- window = create_window(real_size, channel=channel).to(img1.device)
50
-
51
- # mu1 = F.conv2d(img1, window, padding=padd, groups=channel)
52
- # mu2 = F.conv2d(img2, window, padding=padd, groups=channel)
53
- mu1 = F.conv2d(F.pad(img1, (5, 5, 5, 5), mode="replicate"), window, padding=padd, groups=channel)
54
- mu2 = F.conv2d(F.pad(img2, (5, 5, 5, 5), mode="replicate"), window, padding=padd, groups=channel)
55
-
56
- mu1_sq = mu1.pow(2)
57
- mu2_sq = mu2.pow(2)
58
- mu1_mu2 = mu1 * mu2
59
-
60
- sigma1_sq = F.conv2d(F.pad(img1 * img1, (5, 5, 5, 5), "replicate"), window, padding=padd, groups=channel) - mu1_sq
61
- sigma2_sq = F.conv2d(F.pad(img2 * img2, (5, 5, 5, 5), "replicate"), window, padding=padd, groups=channel) - mu2_sq
62
- sigma12 = F.conv2d(F.pad(img1 * img2, (5, 5, 5, 5), "replicate"), window, padding=padd, groups=channel) - mu1_mu2
63
-
64
- C1 = (0.01 * L) ** 2
65
- C2 = (0.03 * L) ** 2
66
-
67
- v1 = 2.0 * sigma12 + C2
68
- v2 = sigma1_sq + sigma2_sq + C2
69
- cs = torch.mean(v1 / v2) # contrast sensitivity
70
-
71
- ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2)
72
-
73
- if size_average:
74
- ret = ssim_map.mean()
75
- else:
76
- ret = ssim_map.mean(1).mean(1).mean(1)
77
-
78
- if full:
79
- return ret, cs
80
- return ret
81
-
82
-
83
- def ssim_matlab(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None):
84
- # Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh).
85
- if val_range is None:
86
- if torch.max(img1) > 128:
87
- max_val = 255
88
- else:
89
- max_val = 1
90
-
91
- if torch.min(img1) < -0.5:
92
- min_val = -1
93
- else:
94
- min_val = 0
95
- L = max_val - min_val
96
- else:
97
- L = val_range
98
-
99
- padd = 0
100
- (_, _, height, width) = img1.size()
101
- if window is None:
102
- real_size = min(window_size, height, width)
103
- window = create_window_3d(real_size, channel=1).to(img1.device, dtype=img1.dtype)
104
- # Channel is set to 1 since we consider color images as volumetric images
105
-
106
- img1 = img1.unsqueeze(1)
107
- img2 = img2.unsqueeze(1)
108
-
109
- mu1 = F.conv3d(F.pad(img1, (5, 5, 5, 5, 5, 5), mode="replicate"), window, padding=padd, groups=1)
110
- mu2 = F.conv3d(F.pad(img2, (5, 5, 5, 5, 5, 5), mode="replicate"), window, padding=padd, groups=1)
111
-
112
- mu1_sq = mu1.pow(2)
113
- mu2_sq = mu2.pow(2)
114
- mu1_mu2 = mu1 * mu2
115
-
116
- sigma1_sq = F.conv3d(F.pad(img1 * img1, (5, 5, 5, 5, 5, 5), "replicate"), window, padding=padd, groups=1) - mu1_sq
117
- sigma2_sq = F.conv3d(F.pad(img2 * img2, (5, 5, 5, 5, 5, 5), "replicate"), window, padding=padd, groups=1) - mu2_sq
118
- sigma12 = F.conv3d(F.pad(img1 * img2, (5, 5, 5, 5, 5, 5), "replicate"), window, padding=padd, groups=1) - mu1_mu2
119
-
120
- C1 = (0.01 * L) ** 2
121
- C2 = (0.03 * L) ** 2
122
-
123
- v1 = 2.0 * sigma12 + C2
124
- v2 = sigma1_sq + sigma2_sq + C2
125
- cs = torch.mean(v1 / v2) # contrast sensitivity
126
-
127
- ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2)
128
-
129
- if size_average:
130
- ret = ssim_map.mean()
131
- else:
132
- ret = ssim_map.mean(1).mean(1).mean(1)
133
-
134
- if full:
135
- return ret, cs
136
- return ret
137
-
138
-
139
- def msssim(img1, img2, window_size=11, size_average=True, val_range=None, normalize=False):
140
- device = img1.device
141
- weights = torch.FloatTensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333]).to(device)
142
- levels = weights.size()[0]
143
- mssim = []
144
- mcs = []
145
- for _ in range(levels):
146
- sim, cs = ssim(img1, img2, window_size=window_size, size_average=size_average, full=True, val_range=val_range)
147
- mssim.append(sim)
148
- mcs.append(cs)
149
-
150
- img1 = F.avg_pool2d(img1, (2, 2))
151
- img2 = F.avg_pool2d(img2, (2, 2))
152
-
153
- mssim = torch.stack(mssim)
154
- mcs = torch.stack(mcs)
155
-
156
- # Normalize (to avoid NaNs during training unstable models, not compliant with original definition)
157
- if normalize:
158
- mssim = (mssim + 1) / 2
159
- mcs = (mcs + 1) / 2
160
-
161
- pow1 = mcs**weights
162
- pow2 = mssim**weights
163
- # From Matlab implementation https://ece.uwaterloo.ca/~z70wang/research/iwssim/
164
- output = torch.prod(pow1[:-1] * pow2[-1])
165
- return output
166
-
167
-
168
- # Classes to re-use window
169
- class SSIM(torch.nn.Module):
170
- def __init__(self, window_size=11, size_average=True, val_range=None):
171
- super(SSIM, self).__init__()
172
- self.window_size = window_size
173
- self.size_average = size_average
174
- self.val_range = val_range
175
-
176
- # Assume 3 channel for SSIM
177
- self.channel = 3
178
- self.window = create_window(window_size, channel=self.channel)
179
-
180
- def forward(self, img1, img2):
181
- (_, channel, _, _) = img1.size()
182
-
183
- if channel == self.channel and self.window.dtype == img1.dtype:
184
- window = self.window
185
- else:
186
- window = create_window(self.window_size, channel).to(img1.device).type(img1.dtype)
187
- self.window = window
188
- self.channel = channel
189
-
190
- _ssim = ssim(img1, img2, window=window, window_size=self.window_size, size_average=self.size_average)
191
- dssim = (1 - _ssim) / 2
192
- return dssim
193
-
194
-
195
- class MSSSIM(torch.nn.Module):
196
- def __init__(self, window_size=11, size_average=True, channel=3):
197
- super(MSSSIM, self).__init__()
198
- self.window_size = window_size
199
- self.size_average = size_average
200
- self.channel = channel
201
-
202
- def forward(self, img1, img2):
203
- return msssim(img1, img2, window_size=self.window_size, size_average=self.size_average)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
rife/refine.py DELETED
@@ -1,107 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- from .warplayer import warp
4
- import torch.nn.functional as F
5
-
6
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
7
-
8
-
9
- def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
10
- return nn.Sequential(
11
- nn.Conv2d(
12
- in_planes,
13
- out_planes,
14
- kernel_size=kernel_size,
15
- stride=stride,
16
- padding=padding,
17
- dilation=dilation,
18
- bias=True,
19
- ),
20
- nn.PReLU(out_planes),
21
- )
22
-
23
-
24
- def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
25
- return nn.Sequential(
26
- torch.nn.ConvTranspose2d(
27
- in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1, bias=True
28
- ),
29
- nn.PReLU(out_planes),
30
- )
31
-
32
-
33
- class Conv2(nn.Module):
34
- def __init__(self, in_planes, out_planes, stride=2):
35
- super(Conv2, self).__init__()
36
- self.conv1 = conv(in_planes, out_planes, 3, stride, 1)
37
- self.conv2 = conv(out_planes, out_planes, 3, 1, 1)
38
-
39
- def forward(self, x):
40
- x = self.conv1(x)
41
- x = self.conv2(x)
42
- return x
43
-
44
-
45
- c = 16
46
-
47
-
48
- class Contextnet(nn.Module):
49
- def __init__(self):
50
- super(Contextnet, self).__init__()
51
- self.conv1 = Conv2(3, c)
52
- self.conv2 = Conv2(c, 2 * c)
53
- self.conv3 = Conv2(2 * c, 4 * c)
54
- self.conv4 = Conv2(4 * c, 8 * c)
55
-
56
- def forward(self, x, flow):
57
- x = self.conv1(x)
58
- flow = (
59
- F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False)
60
- * 0.5
61
- )
62
- f1 = warp(x, flow)
63
- x = self.conv2(x)
64
- flow = (
65
- F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False)
66
- * 0.5
67
- )
68
- f2 = warp(x, flow)
69
- x = self.conv3(x)
70
- flow = (
71
- F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False)
72
- * 0.5
73
- )
74
- f3 = warp(x, flow)
75
- x = self.conv4(x)
76
- flow = (
77
- F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False)
78
- * 0.5
79
- )
80
- f4 = warp(x, flow)
81
- return [f1, f2, f3, f4]
82
-
83
-
84
- class Unet(nn.Module):
85
- def __init__(self):
86
- super(Unet, self).__init__()
87
- self.down0 = Conv2(17, 2 * c)
88
- self.down1 = Conv2(4 * c, 4 * c)
89
- self.down2 = Conv2(8 * c, 8 * c)
90
- self.down3 = Conv2(16 * c, 16 * c)
91
- self.up0 = deconv(32 * c, 8 * c)
92
- self.up1 = deconv(16 * c, 4 * c)
93
- self.up2 = deconv(8 * c, 2 * c)
94
- self.up3 = deconv(4 * c, c)
95
- self.conv = nn.Conv2d(c, 3, 3, 1, 1)
96
-
97
- def forward(self, img0, img1, warped_img0, warped_img1, mask, flow, c0, c1):
98
- s0 = self.down0(torch.cat((img0, img1, warped_img0, warped_img1, mask, flow), 1))
99
- s1 = self.down1(torch.cat((s0, c0[0], c1[0]), 1))
100
- s2 = self.down2(torch.cat((s1, c0[1], c1[1]), 1))
101
- s3 = self.down3(torch.cat((s2, c0[2], c1[2]), 1))
102
- x = self.up0(torch.cat((s3, c0[3], c1[3]), 1))
103
- x = self.up1(torch.cat((x, s2), 1))
104
- x = self.up2(torch.cat((x, s1), 1))
105
- x = self.up3(torch.cat((x, s0), 1))
106
- x = self.conv(x)
107
- return torch.sigmoid(x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
rife/refine_2R.py DELETED
@@ -1,104 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- from .warplayer import warp
4
- import torch.nn.functional as F
5
-
6
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
7
-
8
-
9
- def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
10
- return nn.Sequential(
11
- nn.Conv2d(
12
- in_planes,
13
- out_planes,
14
- kernel_size=kernel_size,
15
- stride=stride,
16
- padding=padding,
17
- dilation=dilation,
18
- bias=True,
19
- ),
20
- nn.PReLU(out_planes),
21
- )
22
-
23
-
24
- def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
25
- return nn.Sequential(
26
- torch.nn.ConvTranspose2d(
27
- in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1, bias=True
28
- ),
29
- nn.PReLU(out_planes),
30
- )
31
-
32
-
33
- class Conv2(nn.Module):
34
- def __init__(self, in_planes, out_planes, stride=2):
35
- super(Conv2, self).__init__()
36
- self.conv1 = conv(in_planes, out_planes, 3, stride, 1)
37
- self.conv2 = conv(out_planes, out_planes, 3, 1, 1)
38
-
39
- def forward(self, x):
40
- x = self.conv1(x)
41
- x = self.conv2(x)
42
- return x
43
-
44
-
45
- c = 16
46
-
47
-
48
- class Contextnet(nn.Module):
49
- def __init__(self):
50
- super(Contextnet, self).__init__()
51
- self.conv1 = Conv2(3, c, 1)
52
- self.conv2 = Conv2(c, 2 * c)
53
- self.conv3 = Conv2(2 * c, 4 * c)
54
- self.conv4 = Conv2(4 * c, 8 * c)
55
-
56
- def forward(self, x, flow):
57
- x = self.conv1(x)
58
- # flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 0.5
59
- f1 = warp(x, flow)
60
- x = self.conv2(x)
61
- flow = (
62
- F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False)
63
- * 0.5
64
- )
65
- f2 = warp(x, flow)
66
- x = self.conv3(x)
67
- flow = (
68
- F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False)
69
- * 0.5
70
- )
71
- f3 = warp(x, flow)
72
- x = self.conv4(x)
73
- flow = (
74
- F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False)
75
- * 0.5
76
- )
77
- f4 = warp(x, flow)
78
- return [f1, f2, f3, f4]
79
-
80
-
81
- class Unet(nn.Module):
82
- def __init__(self):
83
- super(Unet, self).__init__()
84
- self.down0 = Conv2(17, 2 * c, 1)
85
- self.down1 = Conv2(4 * c, 4 * c)
86
- self.down2 = Conv2(8 * c, 8 * c)
87
- self.down3 = Conv2(16 * c, 16 * c)
88
- self.up0 = deconv(32 * c, 8 * c)
89
- self.up1 = deconv(16 * c, 4 * c)
90
- self.up2 = deconv(8 * c, 2 * c)
91
- self.up3 = deconv(4 * c, c)
92
- self.conv = nn.Conv2d(c, 3, 3, 2, 1)
93
-
94
- def forward(self, img0, img1, warped_img0, warped_img1, mask, flow, c0, c1):
95
- s0 = self.down0(torch.cat((img0, img1, warped_img0, warped_img1, mask, flow), 1))
96
- s1 = self.down1(torch.cat((s0, c0[0], c1[0]), 1))
97
- s2 = self.down2(torch.cat((s1, c0[1], c1[1]), 1))
98
- s3 = self.down3(torch.cat((s2, c0[2], c1[2]), 1))
99
- x = self.up0(torch.cat((s3, c0[3], c1[3]), 1))
100
- x = self.up1(torch.cat((x, s2), 1))
101
- x = self.up2(torch.cat((x, s1), 1))
102
- x = self.up3(torch.cat((x, s0), 1))
103
- x = self.conv(x)
104
- return torch.sigmoid(x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
rife/warplayer.py DELETED
@@ -1,34 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
-
4
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
5
- backwarp_tenGrid = {}
6
-
7
-
8
- def warp(tenInput, tenFlow):
9
- k = (str(tenFlow.device), str(tenFlow.size()))
10
- if k not in backwarp_tenGrid:
11
- tenHorizontal = (
12
- torch.linspace(-1.0, 1.0, tenFlow.shape[3], device=device)
13
- .view(1, 1, 1, tenFlow.shape[3])
14
- .expand(tenFlow.shape[0], -1, tenFlow.shape[2], -1)
15
- )
16
- tenVertical = (
17
- torch.linspace(-1.0, 1.0, tenFlow.shape[2], device=device)
18
- .view(1, 1, tenFlow.shape[2], 1)
19
- .expand(tenFlow.shape[0], -1, -1, tenFlow.shape[3])
20
- )
21
- backwarp_tenGrid[k] = torch.cat([tenHorizontal, tenVertical], 1).to(device)
22
-
23
- tenFlow = torch.cat(
24
- [
25
- tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0) / 2.0),
26
- tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) / 2.0),
27
- ],
28
- 1,
29
- )
30
-
31
- g = (backwarp_tenGrid[k] + tenFlow).permute(0, 2, 3, 1)
32
- return torch.nn.functional.grid_sample(
33
- input=tenInput, grid=g, mode="bilinear", padding_mode="border", align_corners=True
34
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
rife_model.py DELETED
@@ -1,129 +0,0 @@
1
- import torch
2
- from diffusers.image_processor import VaeImageProcessor
3
- from torch.nn import functional as F
4
- import cv2
5
- import utils
6
- from rife.pytorch_msssim import ssim_matlab
7
- import numpy as np
8
- import logging
9
- import skvideo.io
10
- from rife.RIFE_HDv3 import Model
11
-
12
- logger = logging.getLogger(__name__)
13
- device = "cuda" if torch.cuda.is_available() else "cpu"
14
-
15
-
16
- def pad_image(img, scale):
17
- _, _, h, w = img.shape
18
- tmp = max(32, int(32 / scale))
19
- ph = ((h - 1) // tmp + 1) * tmp
20
- pw = ((w - 1) // tmp + 1) * tmp
21
- padding = (0, 0, pw - w, ph - h)
22
- return F.pad(img, padding)
23
-
24
-
25
- def make_inference(model, I0, I1, upscale_amount, n):
26
- middle = model.inference(I0, I1, upscale_amount)
27
- if n == 1:
28
- return [middle]
29
- first_half = make_inference(model, I0, middle, upscale_amount, n=n // 2)
30
- second_half = make_inference(model, middle, I1, upscale_amount, n=n // 2)
31
- if n % 2:
32
- return [*first_half, middle, *second_half]
33
- else:
34
- return [*first_half, *second_half]
35
-
36
-
37
- @torch.inference_mode()
38
- def ssim_interpolation_rife(model, samples, exp=1, upscale_amount=1, output_device="cpu"):
39
-
40
- output = []
41
- # [f, c, h, w]
42
- for b in range(samples.shape[0]):
43
- frame = samples[b : b + 1]
44
- _, _, h, w = frame.shape
45
- I0 = samples[b : b + 1]
46
- I1 = samples[b + 1 : b + 2] if b + 2 < samples.shape[0] else samples[-1:]
47
- I1 = pad_image(I1, upscale_amount)
48
- # [c, h, w]
49
- I0_small = F.interpolate(I0, (32, 32), mode="bilinear", align_corners=False)
50
- I1_small = F.interpolate(I1, (32, 32), mode="bilinear", align_corners=False)
51
-
52
- ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])
53
-
54
- if ssim > 0.996:
55
- I1 = I0
56
- I1 = pad_image(I1, upscale_amount)
57
- I1 = make_inference(model, I0, I1, upscale_amount, 1)
58
-
59
- I1_small = F.interpolate(I1[0], (32, 32), mode="bilinear", align_corners=False)
60
- ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])
61
- frame = I1[0]
62
- I1 = I1[0]
63
-
64
- tmp_output = []
65
- if ssim < 0.2:
66
- for i in range((2**exp) - 1):
67
- tmp_output.append(I0)
68
-
69
- else:
70
- tmp_output = make_inference(model, I0, I1, upscale_amount, 2**exp - 1) if exp else []
71
-
72
- frame = pad_image(frame, upscale_amount)
73
- tmp_output = [frame] + tmp_output
74
- for i, frame in enumerate(tmp_output):
75
- output.append(frame.to(output_device))
76
- return output
77
-
78
-
79
- def load_rife_model(model_path):
80
- model = Model()
81
- model.load_model(model_path, -1)
82
- model.eval()
83
- return model
84
-
85
-
86
- # Create a generator that yields each frame, similar to cv2.VideoCapture
87
- def frame_generator(video_capture):
88
- while True:
89
- ret, frame = video_capture.read()
90
- if not ret:
91
- break
92
- yield frame
93
- video_capture.release()
94
-
95
-
96
- def rife_inference_with_path(model, video_path):
97
- video_capture = cv2.VideoCapture(video_path)
98
- tot_frame = video_capture.get(cv2.CAP_PROP_FRAME_COUNT)
99
- pt_frame_data = []
100
- pt_frame = skvideo.io.vreader(video_path)
101
- for frame in pt_frame:
102
- pt_frame_data.append(
103
- torch.from_numpy(np.transpose(frame, (2, 0, 1))).to("cpu", non_blocking=True).float() / 255.0
104
- )
105
-
106
- pt_frame = torch.from_numpy(np.stack(pt_frame_data))
107
- pt_frame = pt_frame.to(device)
108
- pbar = utils.ProgressBar(tot_frame, desc="RIFE inference")
109
- frames = ssim_interpolation_rife(model, pt_frame)
110
- pt_image = torch.stack([frames[i].squeeze(0) for i in range(len(frames))])
111
- image_np = VaeImageProcessor.pt_to_numpy(pt_image) # (to [49, 512, 480, 3])
112
- image_pil = VaeImageProcessor.numpy_to_pil(image_np)
113
- video_path = utils.save_video(image_pil, fps=16)
114
- if pbar:
115
- pbar.update(1)
116
- return video_path
117
-
118
-
119
- def rife_inference_with_latents(model, latents):
120
- rife_results = []
121
- latents = latents.to(device)
122
- for i in range(latents.size(0)):
123
- # [f, c, w, h]
124
- latent = latents[i]
125
- frames = ssim_interpolation_rife(model, latent)
126
- pt_image = torch.stack([frames[i].squeeze(0) for i in range(len(frames))]) # (to [f, c, w, h])
127
- rife_results.append(pt_image)
128
-
129
- return torch.stack(rife_results)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils.py DELETED
@@ -1,221 +0,0 @@
1
- import math
2
- from typing import Union, List
3
-
4
- import torch
5
- import os
6
- from datetime import datetime
7
- import numpy as np
8
- import itertools
9
- import PIL.Image
10
- import safetensors.torch
11
- import tqdm
12
- import logging
13
- from diffusers.utils import export_to_video
14
- from spandrel import ModelLoader
15
-
16
- logger = logging.getLogger(__file__)
17
-
18
-
19
- def load_torch_file(ckpt, device=None, dtype=torch.float16):
20
- if device is None:
21
- device = torch.device("cpu")
22
- if ckpt.lower().endswith(".safetensors") or ckpt.lower().endswith(".sft"):
23
- sd = safetensors.torch.load_file(ckpt, device=device.type)
24
- else:
25
- if not "weights_only" in torch.load.__code__.co_varnames:
26
- logger.warning(
27
- "Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely."
28
- )
29
-
30
- pl_sd = torch.load(ckpt, map_location=device, weights_only=True)
31
- if "global_step" in pl_sd:
32
- logger.debug(f"Global Step: {pl_sd['global_step']}")
33
- if "state_dict" in pl_sd:
34
- sd = pl_sd["state_dict"]
35
- elif "params_ema" in pl_sd:
36
- sd = pl_sd["params_ema"]
37
- else:
38
- sd = pl_sd
39
-
40
- sd = {k: v.to(dtype) for k, v in sd.items()}
41
- return sd
42
-
43
-
44
- def state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=False):
45
- if filter_keys:
46
- out = {}
47
- else:
48
- out = state_dict
49
- for rp in replace_prefix:
50
- replace = list(
51
- map(
52
- lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp) :])),
53
- filter(lambda a: a.startswith(rp), state_dict.keys()),
54
- )
55
- )
56
- for x in replace:
57
- w = state_dict.pop(x[0])
58
- out[x[1]] = w
59
- return out
60
-
61
-
62
- def module_size(module):
63
- module_mem = 0
64
- sd = module.state_dict()
65
- for k in sd:
66
- t = sd[k]
67
- module_mem += t.nelement() * t.element_size()
68
- return module_mem
69
-
70
-
71
- def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
72
- return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap)))
73
-
74
-
75
- @torch.inference_mode()
76
- def tiled_scale_multidim(
77
- samples, function, tile=(64, 64), overlap=8, upscale_amount=4, out_channels=3, output_device="cpu", pbar=None
78
- ):
79
- dims = len(tile)
80
- print(f"samples dtype:{samples.dtype}")
81
- output = torch.empty(
82
- [samples.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), samples.shape[2:])),
83
- device=output_device,
84
- )
85
-
86
- for b in range(samples.shape[0]):
87
- s = samples[b : b + 1]
88
- out = torch.zeros(
89
- [s.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), s.shape[2:])),
90
- device=output_device,
91
- )
92
- out_div = torch.zeros(
93
- [s.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), s.shape[2:])),
94
- device=output_device,
95
- )
96
-
97
- for it in itertools.product(*map(lambda a: range(0, a[0], a[1] - overlap), zip(s.shape[2:], tile))):
98
- s_in = s
99
- upscaled = []
100
-
101
- for d in range(dims):
102
- pos = max(0, min(s.shape[d + 2] - overlap, it[d]))
103
- l = min(tile[d], s.shape[d + 2] - pos)
104
- s_in = s_in.narrow(d + 2, pos, l)
105
- upscaled.append(round(pos * upscale_amount))
106
-
107
- ps = function(s_in).to(output_device)
108
- mask = torch.ones_like(ps)
109
- feather = round(overlap * upscale_amount)
110
- for t in range(feather):
111
- for d in range(2, dims + 2):
112
- m = mask.narrow(d, t, 1)
113
- m *= (1.0 / feather) * (t + 1)
114
- m = mask.narrow(d, mask.shape[d] - 1 - t, 1)
115
- m *= (1.0 / feather) * (t + 1)
116
-
117
- o = out
118
- o_d = out_div
119
- for d in range(dims):
120
- o = o.narrow(d + 2, upscaled[d], mask.shape[d + 2])
121
- o_d = o_d.narrow(d + 2, upscaled[d], mask.shape[d + 2])
122
-
123
- o += ps * mask
124
- o_d += mask
125
-
126
- if pbar is not None:
127
- pbar.update(1)
128
-
129
- output[b : b + 1] = out / out_div
130
- return output
131
-
132
-
133
- def tiled_scale(
134
- samples,
135
- function,
136
- tile_x=64,
137
- tile_y=64,
138
- overlap=8,
139
- upscale_amount=4,
140
- out_channels=3,
141
- output_device="cpu",
142
- pbar=None,
143
- ):
144
- return tiled_scale_multidim(
145
- samples, function, (tile_y, tile_x), overlap, upscale_amount, out_channels, output_device, pbar
146
- )
147
-
148
-
149
- def load_sd_upscale(ckpt, inf_device):
150
- sd = load_torch_file(ckpt, device=inf_device)
151
- if "module.layers.0.residual_group.blocks.0.norm1.weight" in sd:
152
- sd = state_dict_prefix_replace(sd, {"module.": ""})
153
- out = ModelLoader().load_from_state_dict(sd).half()
154
- return out
155
-
156
-
157
- def upscale(upscale_model, tensor: torch.Tensor, inf_device, output_device="cpu") -> torch.Tensor:
158
- memory_required = module_size(upscale_model.model)
159
- memory_required += (
160
- (512 * 512 * 3) * tensor.element_size() * max(upscale_model.scale, 1.0) * 384.0
161
- ) # The 384.0 is an estimate of how much some of these models take, TODO: make it more accurate
162
- memory_required += tensor.nelement() * tensor.element_size()
163
- print(f"UPScaleMemory required: {memory_required / 1024 / 1024 / 1024} GB")
164
-
165
- upscale_model.to(inf_device)
166
- tile = 512
167
- overlap = 32
168
-
169
- steps = tensor.shape[0] * get_tiled_scale_steps(
170
- tensor.shape[3], tensor.shape[2], tile_x=tile, tile_y=tile, overlap=overlap
171
- )
172
-
173
- pbar = ProgressBar(steps, desc="Tiling and Upscaling")
174
-
175
- s = tiled_scale(
176
- samples=tensor.to(torch.float16),
177
- function=lambda a: upscale_model(a),
178
- tile_x=tile,
179
- tile_y=tile,
180
- overlap=overlap,
181
- upscale_amount=upscale_model.scale,
182
- pbar=pbar,
183
- )
184
-
185
- upscale_model.to(output_device)
186
- return s
187
-
188
-
189
- def upscale_batch_and_concatenate(upscale_model, latents, inf_device, output_device="cpu") -> torch.Tensor:
190
- upscaled_latents = []
191
- for i in range(latents.size(0)):
192
- latent = latents[i]
193
- upscaled_latent = upscale(upscale_model, latent, inf_device, output_device)
194
- upscaled_latents.append(upscaled_latent)
195
- return torch.stack(upscaled_latents)
196
-
197
-
198
- def save_video(tensor: Union[List[np.ndarray], List[PIL.Image.Image]], fps: int = 8):
199
- timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
200
- video_path = f"./output/{timestamp}.mp4"
201
- os.makedirs(os.path.dirname(video_path), exist_ok=True)
202
- export_to_video(tensor, video_path, fps=fps)
203
- return video_path
204
-
205
-
206
- class ProgressBar:
207
- def __init__(self, total, desc=None):
208
- self.total = total
209
- self.current = 0
210
- self.b_unit = tqdm.tqdm(total=total, desc="ProgressBar context index: 0" if desc is None else desc)
211
-
212
- def update(self, value):
213
- if value > self.total:
214
- value = self.total
215
- self.current = value
216
- if self.b_unit is not None:
217
- self.b_unit.set_description("ProgressBar context index: {}".format(self.current))
218
- self.b_unit.refresh()
219
-
220
- # 更新进度
221
- self.b_unit.update(self.current)