import gradio as gr import torch import json import csv import os import cv2 import numpy as np import pandas as pd import easyocr import keras_ocr from paddleocr import PaddleOCR from transformers import DistilBertTokenizer, DistilBertForSequenceClassification import torch.nn.functional as F # Added for softmax # Paths MODEL_PATH = "./distilbert_spam_model" RESULTS_JSON = "ocr_results.json" RESULTS_CSV = "ocr_results.csv" # Ensure model exists if not os.path.exists(os.path.join(MODEL_PATH, "pytorch_model.bin")): print(f"⚠️ Model not found in {MODEL_PATH}. Downloading from Hugging Face Hub...") model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=2) model.save_pretrained(MODEL_PATH) tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased") tokenizer.save_pretrained(MODEL_PATH) print(f"✅ Model saved at {MODEL_PATH}.") else: model = DistilBertForSequenceClassification.from_pretrained(MODEL_PATH) tokenizer = DistilBertTokenizer.from_pretrained(MODEL_PATH) # Load OCR Methods def ocr_with_paddle(img): ocr = PaddleOCR(lang='en', use_angle_cls=True) result = ocr.ocr(img) return ' '.join([item[1][0] for item in result[0]]) def ocr_with_keras(img): pipeline = keras_ocr.pipeline.Pipeline() images = [keras_ocr.tools.read(img)] predictions = pipeline.recognize(images) return ' '.join([text for text, _ in predictions[0]]) def ocr_with_easy(img): gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) reader = easyocr.Reader(['en']) results = reader.readtext(gray_image, detail=0) return ' '.join(results) # OCR Function def generate_ocr(method, img): if img is None: raise gr.Error("Please upload an image!") # Convert PIL Image to OpenCV format img = np.array(img) # Select OCR method if method == "PaddleOCR": text_output = ocr_with_paddle(img) elif method == "EasyOCR": text_output = ocr_with_easy(img) else: # KerasOCR text_output = ocr_with_keras(img) # Classify Text as Spam or Not Spam inputs = tokenizer(text_output, return_tensors="pt", truncation=True, padding=True, max_length=512) with torch.no_grad(): outputs = model(**inputs) probs = F.softmax(outputs.logits, dim=1) # Convert logits to probabilities prediction = torch.argmax(probs, dim=1).item() label_map = {0: "Not Spam", 1: "Spam"} label = label_map[prediction] # Save results save_results(text_output, label) return text_output, label # Save extracted text to JSON & CSV def save_results(text, label): data = {"text": text, "label": label} # Save to JSON if not os.path.exists(RESULTS_JSON): with open(RESULTS_JSON, "w") as f: json.dump([], f) with open(RESULTS_JSON, "r+") as f: content = json.load(f) content.append(data) f.seek(0) json.dump(content, f, indent=4) # Save to CSV file_exists = os.path.exists(RESULTS_CSV) with open(RESULTS_CSV, "a", newline="") as f: writer = csv.DictWriter(f, fieldnames=["text", "label"]) if not file_exists: writer.writeheader() writer.writerow(data) # Gradio Interface image_input = gr.Image() method_input = gr.Radio(["PaddleOCR", "EasyOCR", "KerasOCR"], value="PaddleOCR") output_text = gr.Textbox(label="Extracted Text") output_label = gr.Textbox(label="Spam Classification") demo = gr.Interface( generate_ocr, inputs=[method_input, image_input], outputs=[output_text, output_label], title="OCR Spam Classifier", description="Upload an image, extract text, and classify it as Spam or Not Spam.", theme="compact", ) # Launch App if __name__ == "__main__": demo.launch()