Spaces:
Running
Running
import gradio as gr | |
import torch | |
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification | |
import keras_ocr | |
import cv2 | |
import easyocr | |
from paddleocr import PaddleOCR | |
import numpy as np | |
# Load tokenizer | |
tokenizer = DistilBertTokenizer.from_pretrained("./distilbert_spam_model") | |
# Load model | |
model = DistilBertForSequenceClassification.from_pretrained("./distilbert_spam_model") | |
model.load_state_dict(torch.load("./distilbert_spam_model/model.pth", map_location=torch.device('cpu'))) | |
model.eval() | |
""" | |
Paddle OCR | |
""" | |
def ocr_with_paddle(img): | |
finaltext = '' | |
ocr = PaddleOCR(lang='en', use_angle_cls=True) | |
result = ocr.ocr(img) | |
for i in range(len(result[0])): | |
text = result[0][i][1][0] | |
finaltext += ' ' + text | |
return finaltext | |
""" | |
Keras OCR | |
""" | |
def ocr_with_keras(img): | |
output_text = '' | |
pipeline = keras_ocr.pipeline.Pipeline() | |
images = [keras_ocr.tools.read(img)] | |
predictions = pipeline.recognize(images) | |
for text, _ in predictions[0]: | |
output_text += ' ' + text | |
return output_text | |
""" | |
Easy OCR | |
""" | |
def ocr_with_easy(img): | |
reader = easyocr.Reader(['en']) | |
bounds = reader.readtext(img, paragraph=True, detail=0) | |
return ' '.join(bounds) | |
""" | |
Generate OCR and classify spam | |
""" | |
def generate_ocr_and_classify(Method, img): | |
if img is None: | |
raise gr.Error("Please upload an image!") | |
# Perform OCR | |
text_output = '' | |
if Method == 'EasyOCR': | |
text_output = ocr_with_easy(img) | |
elif Method == 'KerasOCR': | |
text_output = ocr_with_keras(img) | |
elif Method == 'PaddleOCR': | |
text_output = ocr_with_paddle(img) | |
# Classify extracted text | |
inputs = tokenizer(text_output, return_tensors="pt", truncation=True, padding=True) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
prediction = torch.argmax(outputs.logits, dim=1).item() | |
classification = "Spam" if prediction == 1 else "Not Spam" | |
return text_output, classification | |
""" | |
Create user interface | |
""" | |
image = gr.Image() | |
method = gr.Radio(["PaddleOCR", "EasyOCR", "KerasOCR"], value="PaddleOCR") | |
output_text = gr.Textbox(label="Extracted Text") | |
output_label = gr.Label(label="Classification") | |
demo = gr.Interface( | |
generate_ocr_and_classify, | |
[method, image], | |
[output_text, output_label], | |
title="OCR & Spam Classification", | |
description="Upload an image with text, extract the text using OCR, and classify whether it is spam or not.", | |
) | |
demo.launch() | |