File size: 6,721 Bytes
9c9eef9
ebe2332
 
 
 
 
 
 
 
 
 
56888a5
ebe2332
56888a5
ebe2332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56888a5
ebe2332
 
530524e
 
 
 
 
 
 
 
 
a40894f
424e459
b49d6ac
530524e
 
 
 
 
 
 
 
 
 
 
 
 
 
b116a79
424e459
a40894f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebe2332
 
 
 
 
a40894f
ebe2332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a40894f
ebe2332
 
 
 
 
a40894f
ebe2332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a40894f
ebe2332
 
 
 
 
a40894f
 
 
ebe2332
a40894f
ebe2332
 
 
 
 
a40894f
 
 
 
ebe2332
 
 
 
 
a40894f
ebe2332
 
 
65314b9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import torch
from transformers import (
    Qwen2VLForConditionalGeneration, 
    AutoProcessor,
    AutoModelForCausalLM, 
    AutoTokenizer
)
from qwen_vl_utils import process_vision_info
from PIL import Image
import cv2
import numpy as np
import gradio as gr
import spaces

# Load both models and their processors/tokenizers
def load_models():
    # Vision model
    vision_model = Qwen2VLForConditionalGeneration.from_pretrained(
        "Qwen/Qwen2-VL-2B-Instruct",
        torch_dtype=torch.float16,
        device_map="auto"
    )
    vision_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
    
    # Code model
    code_model = AutoModelForCausalLM.from_pretrained(
        "Qwen/Qwen2.5-Coder-1.5B-Instruct",
        torch_dtype=torch.float16,
        device_map="auto"
    )
    code_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-1.5B-Instruct")
    
    return vision_model, vision_processor, code_model, code_tokenizer

vision_model, vision_processor, code_model, code_tokenizer = load_models()

VISION_SYSTEM_PROMPT = """You are an OCR system specialized in extracting code from images and videos. Your task is to:
1. Extract and output ONLY the exact code snippets visible in the image
2. Maintain exact formatting, indentation, and whitespace
3. Do not add any descriptions, analysis, or commentary
4. If there are error messages or console outputs visible, include them exactly as shown
Output Format:
```[language]
[extracted code here]
If multiple code sections are visible, separate them with ---
Note: In video, irrelevant frames may occur (e.g., other windows tabs, eterniq website, etc.) in video. Please focus on code-specific frames as we have to extract that content only.
"""

CODE_SYSTEM_PROMPT = """You are an expert code debugging assistant. You will receive:
1. Original code (extracted by OCR)
2. User's description of the issue
3. Additional context if any
Your task is to:
1. Analyze the provided code considering the user's description
2. Identify bugs and issues
3. Provide a corrected version of the code
4. Explain the specific fixes made
Output Format:
Fixed Code:
[corrected code here]
Original Code Issue:
[Brief description of the issues based on user input and code analysis]
Note: Please provide the output in a well-structured Markdown format. Remove all unnecessary information and exclude any additional code formatting such as triple backticks or language identifiers. The response should be ready to be rendered as Markdown content.
"""
def process_video_for_code(video_path, transcribed_text, max_frames=16, frame_interval=30):
    cap = cv2.VideoCapture(video_path)
    frames = []
    frame_count = 0
    
    while len(frames) < max_frames:
        ret, frame = cap.read()
        if not ret:
            break
            
        if frame_count % frame_interval == 0:
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            frame = Image.fromarray(frame)
            frames.append(frame)
            
        frame_count += 1
        
    cap.release()
    
    if not frames:
        return "No frames could be extracted from the video.", "No code could be analyzed."

    # Process all frames
    vision_descriptions = []
    for frame in frames:
        vision_description = process_image_for_vision(frame, transcribed_text)
        vision_descriptions.append(vision_description)

    # Combine all vision descriptions
    combined_vision_description = "\n\n".join(vision_descriptions)

    # Use code model to fix the code based on combined description
    fixed_code_response = process_for_code(combined_vision_description)

    return combined_vision_description, fixed_code_response

def process_image_for_vision(image, transcribed_text):
    vision_messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": image},
                {"type": "text", "text": f"{VISION_SYSTEM_PROMPT}\n\nDescribe the code and any errors you see in this image. User's description: {transcribed_text}"},
            ],
        }
    ]

    vision_text = vision_processor.apply_chat_template(
        vision_messages, 
        tokenize=False, 
        add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(vision_messages)

    vision_inputs = vision_processor(
        text=[vision_text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    ).to(vision_model.device)

    with torch.no_grad():
        vision_output_ids = vision_model.generate(**vision_inputs, max_new_tokens=512)
    vision_output_trimmed = [
        out_ids[len(in_ids):] for in_ids, out_ids in zip(vision_inputs.input_ids, vision_output_ids)
    ]
    return vision_processor.batch_decode(
        vision_output_trimmed, 
        skip_special_tokens=True, 
        clean_up_tokenization_spaces=False
    )[0]

def process_for_code(vision_description):
    code_messages = [
        {"role": "system", "content": CODE_SYSTEM_PROMPT},
        {"role": "user", "content": f"Here's a description of code with errors:\n\n{vision_description}\n\nPlease analyze and fix the code."}
    ]
    
    code_text = code_tokenizer.apply_chat_template(
        code_messages,
        tokenize=False,
        add_generation_prompt=True
    )
    
    code_inputs = code_tokenizer([code_text], return_tensors="pt").to(code_model.device)
    
    with torch.no_grad():
        code_output_ids = code_model.generate(
            **code_inputs,
            max_new_tokens=1024,
            temperature=0.7,
            top_p=0.95,
        )
    
    code_output_trimmed = [
        out_ids[len(in_ids):] for in_ids, out_ids in zip(code_inputs.input_ids, code_output_ids)
    ]
    return code_tokenizer.batch_decode(
        code_output_trimmed,
        skip_special_tokens=True
    )[0]

@spaces.GPU
def process_content(video, transcribed_text):
    if video is None:
        return "Please upload a video file of code with errors.", ""

    vision_output, code_output = process_video_for_code(video.name, transcribed_text)
    return vision_output, code_output

# Gradio interface
iface = gr.Interface(
    fn=process_content,
    inputs=[
        gr.File(label="Upload Video of Code with Errors"),
        gr.Textbox(label="Transcribed Audio")
    ],
    outputs=[
        gr.Textbox(label="Vision Model Output (Code Description)"),
        gr.Code(label="Fixed Code", language="python")
    ],
    title="Vision Code Debugger",
    description="Upload a video of code with errors and provide transcribed audio, and the AI will analyze and fix the issues."
)

if __name__ == "__main__":
    iface.launch(show_error=True)