File size: 6,721 Bytes
9c9eef9 ebe2332 56888a5 ebe2332 56888a5 ebe2332 56888a5 ebe2332 530524e a40894f 424e459 b49d6ac 530524e b116a79 424e459 a40894f ebe2332 a40894f ebe2332 a40894f ebe2332 a40894f ebe2332 a40894f ebe2332 a40894f ebe2332 a40894f ebe2332 a40894f ebe2332 a40894f ebe2332 65314b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import torch
from transformers import (
Qwen2VLForConditionalGeneration,
AutoProcessor,
AutoModelForCausalLM,
AutoTokenizer
)
from qwen_vl_utils import process_vision_info
from PIL import Image
import cv2
import numpy as np
import gradio as gr
import spaces
# Load both models and their processors/tokenizers
def load_models():
# Vision model
vision_model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-2B-Instruct",
torch_dtype=torch.float16,
device_map="auto"
)
vision_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
# Code model
code_model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2.5-Coder-1.5B-Instruct",
torch_dtype=torch.float16,
device_map="auto"
)
code_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-1.5B-Instruct")
return vision_model, vision_processor, code_model, code_tokenizer
vision_model, vision_processor, code_model, code_tokenizer = load_models()
VISION_SYSTEM_PROMPT = """You are an OCR system specialized in extracting code from images and videos. Your task is to:
1. Extract and output ONLY the exact code snippets visible in the image
2. Maintain exact formatting, indentation, and whitespace
3. Do not add any descriptions, analysis, or commentary
4. If there are error messages or console outputs visible, include them exactly as shown
Output Format:
```[language]
[extracted code here]
If multiple code sections are visible, separate them with ---
Note: In video, irrelevant frames may occur (e.g., other windows tabs, eterniq website, etc.) in video. Please focus on code-specific frames as we have to extract that content only.
"""
CODE_SYSTEM_PROMPT = """You are an expert code debugging assistant. You will receive:
1. Original code (extracted by OCR)
2. User's description of the issue
3. Additional context if any
Your task is to:
1. Analyze the provided code considering the user's description
2. Identify bugs and issues
3. Provide a corrected version of the code
4. Explain the specific fixes made
Output Format:
Fixed Code:
[corrected code here]
Original Code Issue:
[Brief description of the issues based on user input and code analysis]
Note: Please provide the output in a well-structured Markdown format. Remove all unnecessary information and exclude any additional code formatting such as triple backticks or language identifiers. The response should be ready to be rendered as Markdown content.
"""
def process_video_for_code(video_path, transcribed_text, max_frames=16, frame_interval=30):
cap = cv2.VideoCapture(video_path)
frames = []
frame_count = 0
while len(frames) < max_frames:
ret, frame = cap.read()
if not ret:
break
if frame_count % frame_interval == 0:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = Image.fromarray(frame)
frames.append(frame)
frame_count += 1
cap.release()
if not frames:
return "No frames could be extracted from the video.", "No code could be analyzed."
# Process all frames
vision_descriptions = []
for frame in frames:
vision_description = process_image_for_vision(frame, transcribed_text)
vision_descriptions.append(vision_description)
# Combine all vision descriptions
combined_vision_description = "\n\n".join(vision_descriptions)
# Use code model to fix the code based on combined description
fixed_code_response = process_for_code(combined_vision_description)
return combined_vision_description, fixed_code_response
def process_image_for_vision(image, transcribed_text):
vision_messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": f"{VISION_SYSTEM_PROMPT}\n\nDescribe the code and any errors you see in this image. User's description: {transcribed_text}"},
],
}
]
vision_text = vision_processor.apply_chat_template(
vision_messages,
tokenize=False,
add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(vision_messages)
vision_inputs = vision_processor(
text=[vision_text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to(vision_model.device)
with torch.no_grad():
vision_output_ids = vision_model.generate(**vision_inputs, max_new_tokens=512)
vision_output_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(vision_inputs.input_ids, vision_output_ids)
]
return vision_processor.batch_decode(
vision_output_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)[0]
def process_for_code(vision_description):
code_messages = [
{"role": "system", "content": CODE_SYSTEM_PROMPT},
{"role": "user", "content": f"Here's a description of code with errors:\n\n{vision_description}\n\nPlease analyze and fix the code."}
]
code_text = code_tokenizer.apply_chat_template(
code_messages,
tokenize=False,
add_generation_prompt=True
)
code_inputs = code_tokenizer([code_text], return_tensors="pt").to(code_model.device)
with torch.no_grad():
code_output_ids = code_model.generate(
**code_inputs,
max_new_tokens=1024,
temperature=0.7,
top_p=0.95,
)
code_output_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(code_inputs.input_ids, code_output_ids)
]
return code_tokenizer.batch_decode(
code_output_trimmed,
skip_special_tokens=True
)[0]
@spaces.GPU
def process_content(video, transcribed_text):
if video is None:
return "Please upload a video file of code with errors.", ""
vision_output, code_output = process_video_for_code(video.name, transcribed_text)
return vision_output, code_output
# Gradio interface
iface = gr.Interface(
fn=process_content,
inputs=[
gr.File(label="Upload Video of Code with Errors"),
gr.Textbox(label="Transcribed Audio")
],
outputs=[
gr.Textbox(label="Vision Model Output (Code Description)"),
gr.Code(label="Fixed Code", language="python")
],
title="Vision Code Debugger",
description="Upload a video of code with errors and provide transcribed audio, and the AI will analyze and fix the issues."
)
if __name__ == "__main__":
iface.launch(show_error=True) |