File size: 36,082 Bytes
5e28d59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 |
import gradio as gr
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import random
import json
import os
# 全局变量存储置顶行
pinned_rows_global = set()
# 从JSON文件读取医疗大语言模型排行榜数据
def generate_llm_data():
"""从metadata/medical_data.json读取医疗大语言模型排行榜数据"""
try:
# 读取JSON文件
json_path = "metadata/medical_data.json"
with open(json_path, 'r', encoding='utf-8') as f:
data = json.load(f)
# 转换为DataFrame
df = pd.DataFrame(data)
# 处理null值,将其替换为"-"
df = df.fillna("-")
# 保持使用链接的原始URL格式,稍后在界面中处理
# 与多模态页面保持一致,不在数据预处理阶段转换HTML
# 根据平均分排序(处理null值的情况)
# 先将平均分为null的行移到最后
df_with_score = df[df['平均分'] != "-"].copy()
df_without_score = df[df['平均分'] == "-"].copy()
# 对有平均分的数据按平均分降序排序
if not df_with_score.empty:
df_with_score = df_with_score.sort_values('平均分', ascending=False)
# 合并数据
df_sorted = pd.concat([df_with_score, df_without_score], ignore_index=True)
# 添加排名
df_sorted['排名'] = range(1, len(df_sorted) + 1)
# 重新排列列的顺序:排名、模型名称、平均分、其他字段
# 获取所有列名
all_columns = list(df_sorted.columns)
# 定义新的列顺序:排名、模型名称、平均分
new_columns = ['排名', '模型名称', '平均分']
# 添加其他列(除了已经包含的列)
other_columns = [col for col in all_columns if col not in new_columns]
new_columns.extend(other_columns)
# 重新排列列
df_sorted = df_sorted[new_columns]
return df_sorted
except FileNotFoundError:
print(f"警告: 找不到文件 {json_path},使用默认数据")
# 如果文件不存在,返回空的DataFrame
return pd.DataFrame()
# 从JSON文件读取医疗多模态大模型排行榜数据
def generate_multimodal_data():
"""从metadata/medical_mm_data.json读取医疗多模态大模型排行榜数据"""
try:
# 读取JSON文件
json_path = "metadata/medical_mm_data.json"
with open(json_path, 'r', encoding='utf-8') as f:
data = json.load(f)
# 转换为DataFrame
df = pd.DataFrame(data)
# 处理null值,将其替换为"-"
df = df.fillna("-")
# 过滤掉类型为"研究"的数据
df = df[df['类型'] != '研究']
# 保持使用链接的原始URL格式,稍后在界面中处理
# Gradio Dataframe不支持HTML,我们需要在界面层面处理链接显示
# 根据平均分排序(处理null值的情况)
# 先将平均分为null的行移到最后
df_with_score = df[df['平均分'] != "-"].copy()
df_without_score = df[df['平均分'] == "-"].copy()
# 对有平均分的数据按平均分降序排序
if not df_with_score.empty:
df_with_score = df_with_score.sort_values('平均分', ascending=False)
# 合并数据
df_sorted = pd.concat([df_with_score, df_without_score], ignore_index=True)
# 添加排名
df_sorted['排名'] = range(1, len(df_sorted) + 1)
# 重新排列列的顺序:排名、模型名称、平均分、其他字段(删除徽章列)
# 获取所有列名
all_columns = list(df_sorted.columns)
# 定义新的列顺序:排名、模型名称、平均分
new_columns = ['排名', '模型名称', '平均分']
# 添加其他列(除了已经包含的列)
other_columns = [col for col in all_columns if col not in new_columns]
new_columns.extend(other_columns)
# 重新排列列
df_sorted = df_sorted[new_columns]
return df_sorted
except FileNotFoundError:
print(f"警告: 找不到文件 {json_path},使用默认数据")
# 如果文件不存在,返回空的DataFrame
return pd.DataFrame()
def get_llm_leaderboard():
"""获取医疗大语言模型排行榜数据"""
return generate_llm_data()
def generate_llm_html_table(df=None, sort_column=None, sort_order="desc", pinned_rows=None):
"""生成医疗大语言模型排行榜的HTML表格"""
if df is None:
df = get_llm_leaderboard()
if df.empty:
return "<p>暂无数据</p>"
if pinned_rows is None:
pinned_rows = set()
# 如果指定了排序列,则进行排序
if sort_column and sort_column in df.columns:
# 特殊处理排名列:按平均分排序而不是按排名数值排序
if sort_column == '排名':
# 按平均分排序来实现排名排序
df_for_sort = df.copy()
df_for_sort['平均分_numeric'] = pd.to_numeric(df_for_sort['平均分'], errors='coerce')
# 降序表示按平均分从高到低(排名1,2,3...),升序表示按平均分从低到高(排名倒序)
if sort_order == "desc":
# 降序:按平均分从高到低,对应排名1,2,3...
sorted_indices = df_for_sort.sort_values('平均分_numeric', ascending=False, na_position='last').index
else:
# 升序:按平均分从低到高,对应排名倒序
sorted_indices = df_for_sort.sort_values('平均分_numeric', ascending=True, na_position='last').index
df = df.loc[sorted_indices].reset_index(drop=True)
# 处理其他数值列的排序
elif sort_column in ['平均分', 'MMMU-Med', 'VQA-RAD', 'SLAKE', 'PathVQA', 'PMC-VQA', 'OMVQA', 'MedXQA']:
# 保存原始数据
original_data = df.copy()
# 创建用于排序的数值列
df_for_sort = df.copy()
df_for_sort[sort_column + '_numeric'] = pd.to_numeric(df_for_sort[sort_column], errors='coerce')
# 按数值列排序
if sort_order == "asc":
sorted_indices = df_for_sort.sort_values(sort_column + '_numeric', ascending=True, na_position='last').index
else:
sorted_indices = df_for_sort.sort_values(sort_column + '_numeric', ascending=False, na_position='last').index
# 使用排序后的索引重新排列原始数据
df = original_data.loc[sorted_indices].reset_index(drop=True)
else:
# 文本列排序
ascending = sort_order == "asc"
df = df.sort_values(sort_column, ascending=ascending, na_position='last').reset_index(drop=True)
# 处理置顶行 - 基于排名号而不是索引
if pinned_rows:
# 将用户输入的排名号转换为对应的行
pinned_df = df[df['排名'].isin(pinned_rows)].copy()
unpinned_df = df[~df['排名'].isin(pinned_rows)].copy()
# 置顶行按排名从小到大排序(保持排名顺序)
if not pinned_df.empty:
pinned_df = pinned_df.sort_values('排名', ascending=True)
# 未置顶行保持当前的排序(不强制按排名排序)
# 这样可以保持用户选择的排序方式
# 合并数据:置顶行在前,其他行在后
if not pinned_df.empty:
display_df = pd.concat([pinned_df, unpinned_df], ignore_index=True)
else:
display_df = unpinned_df
else:
# 没有置顶时,保持当前排序(不强制按排名排序)
display_df = df.reset_index(drop=True)
# 添加行ID用于显示
display_df['row_id'] = display_df.index
# 生成HTML表格
html = """
<div style="overflow-x: auto; width: 100%;">
<style>
.sort-btn {
background: none;
border: none;
cursor: pointer;
margin-left: 5px;
font-size: 12px;
color: #007bff;
padding: 2px 4px;
border-radius: 3px;
}
.sort-btn:hover {
background-color: #e9ecef;
}
.sort-btn:active {
background-color: #dee2e6;
}
.pin-btn {
background: none;
border: none;
cursor: pointer;
font-size: 16px;
padding: 2px 4px;
margin-right: 8px;
border-radius: 3px;
}
.pin-btn:hover {
background-color: #e9ecef;
}
.pinned-row {
background-color: #e3f2fd !important;
border-left: 4px solid #2196f3 !important;
}
</style>
<table style="width: 100%; border-collapse: collapse; margin: 20px 0; font-size: 14px;">
<thead>
<tr style="background-color: #f8f9fa; border-bottom: 2px solid #dee2e6;">
"""
# 添加表头(钉子列 + 其他列)
html += '<th style="padding: 12px 8px; text-align: center; border: 1px solid #dee2e6; font-weight: bold; width: 50px;">📌</th>'
for col in display_df.columns:
if col == 'row_id': # 跳过内部使用的row_id列
continue
html += f'''
<th style="padding: 12px 8px; text-align: left; border: 1px solid #dee2e6; font-weight: bold;">
{col}
</th>
'''
html += """
</tr>
</thead>
<tbody>
"""
# 添加数据行
for idx, row in display_df.iterrows():
row_rank = row['排名'] # 使用排名号而不是row_id
is_pinned = row_rank in pinned_rows if pinned_rows else False
# 为前三名添加特殊样式,置顶行添加置顶样式
row_style = ""
if is_pinned:
row_style = "background-color: #e3f2fd; border-left: 4px solid #2196f3;"
elif row['排名'] <= 3:
row_style = "background-color: #fff3cd;"
elif idx % 2 == 0:
row_style = "background-color: #f8f9fa;"
html += f'<tr style="{row_style}">'
# 添加钉子状态显示列
pin_icon = "📌" if is_pinned else "📍"
html += f'''
<td style="padding: 10px 8px; border: 1px solid #dee2e6; text-align: center;">
<span title="排名: {row_rank}">
{pin_icon}
</span>
</td>
'''
for col in display_df.columns:
if col == 'row_id': # 跳过内部使用的row_id列
continue
cell_value = row[col]
cell_style = "padding: 10px 8px; border: 1px solid #dee2e6; text-align: left;"
# 特殊处理使用链接列
if col == "使用链接" and cell_value != "-" and pd.notna(cell_value):
cell_content = f'<a href="{cell_value}" target="_blank" style="color: #007bff; text-decoration: none;">尝试使用</a>'
# 特殊处理平均分列
elif col == "平均分" and cell_value != "-":
cell_style += " font-weight: bold; color: #28a745;"
cell_content = str(cell_value)
else:
cell_content = str(cell_value) if pd.notna(cell_value) else "-"
html += f'<td style="{cell_style}">{cell_content}</td>'
html += '</tr>'
html += """
</tbody>
</table>
<script>
// 简化的脚本,只保留必要功能
console.log('医疗大语言模型排行榜已加载');
</script>
</div>
"""
return html
def get_multimodal_leaderboard():
"""获取医疗多模态大模型排行榜数据"""
return generate_multimodal_data()
def filter_llm_leaderboard(type_filter, min_score):
"""根据条件筛选医疗大语言模型排行榜"""
df = get_llm_leaderboard()
if df.empty:
return df
# 筛选类型
if type_filter != "全部":
df = df[df["类型"] == type_filter]
# 筛选分数(只对有平均分的数据进行筛选)
if min_score > 0:
# 过滤掉平均分为"-"的行,然后筛选分数
df_with_score = df[df["平均分"] != "-"].copy()
if not df_with_score.empty:
df_with_score = df_with_score[df_with_score["平均分"] >= min_score]
# 如果用户设置了最低分数,则不显示没有平均分的模型
df = df_with_score
# 筛选后保持原始排名顺序(基于平均分的排名)
if not df.empty:
# 按原始排名排序,保持基于平均分的排名顺序
df = df.sort_values("排名", ascending=True).reset_index(drop=True)
return df
def filter_multimodal_leaderboard(type_filter, min_score):
"""根据条件筛选医疗多模态大模型排行榜"""
df = get_multimodal_leaderboard()
if df.empty:
return df
# 筛选类型
if type_filter != "全部":
df = df[df["类型"] == type_filter]
# 筛选分数(只对有平均分的数据进行筛选)
if min_score > 0:
# 过滤掉平均分为"-"的行,然后筛选分数
df_with_score = df[df["平均分"] != "-"].copy()
if not df_with_score.empty:
df_with_score = df_with_score[df_with_score["平均分"] >= min_score]
# 如果用户设置了最低分数,则不显示没有平均分的模型
df = df_with_score
# 筛选后保持原始排名顺序(基于平均分的排名)
if not df.empty:
# 按原始排名排序,保持基于平均分的排名顺序
df = df.sort_values("排名", ascending=True).reset_index(drop=True)
return df
def generate_multimodal_html_table(df=None, sort_column=None, sort_order="desc", pinned_rows=None):
"""生成医疗多模态大模型排行榜的HTML表格"""
if df is None:
df = get_multimodal_leaderboard()
if df.empty:
return "<p>暂无数据</p>"
if pinned_rows is None:
pinned_rows = set()
# 如果指定了排序列,则进行排序
if sort_column and sort_column in df.columns:
# 特殊处理排名列:按平均分排序而不是按排名数值排序
if sort_column == '排名':
# 按平均分排序来实现排名排序
df_for_sort = df.copy()
df_for_sort['平均分_numeric'] = pd.to_numeric(df_for_sort['平均分'], errors='coerce')
# 降序表示按平均分从高到低(排名1,2,3...),升序表示按平均分从低到高(排名倒序)
if sort_order == "desc":
# 降序:按平均分从高到低,对应排名1,2,3...
sorted_indices = df_for_sort.sort_values('平均分_numeric', ascending=False, na_position='last').index
else:
# 升序:按平均分从低到高,对应排名倒序
sorted_indices = df_for_sort.sort_values('平均分_numeric', ascending=True, na_position='last').index
df = df.loc[sorted_indices].reset_index(drop=True)
# 处理其他数值列的排序
elif sort_column in ['平均分', 'MMMU-Med', 'VQA-RAD', 'SLAKE', 'PathVQA', 'PMC-VQA', 'OMVQA', 'MedXQA']:
# 保存原始数据
original_data = df.copy()
# 创建用于排序的数值列
df_for_sort = df.copy()
df_for_sort[sort_column + '_numeric'] = pd.to_numeric(df_for_sort[sort_column], errors='coerce')
# 按数值列排序
if sort_order == "asc":
sorted_indices = df_for_sort.sort_values(sort_column + '_numeric', ascending=True, na_position='last').index
else:
sorted_indices = df_for_sort.sort_values(sort_column + '_numeric', ascending=False, na_position='last').index
# 使用排序后的索引重新排列原始数据
df = original_data.loc[sorted_indices].reset_index(drop=True)
else:
# 文本列排序
ascending = sort_order == "asc"
df = df.sort_values(sort_column, ascending=ascending, na_position='last').reset_index(drop=True)
# 处理置顶行 - 基于排名号而不是索引
if pinned_rows:
# 将用户输入的排名号转换为对应的行
pinned_df = df[df['排名'].isin(pinned_rows)].copy()
unpinned_df = df[~df['排名'].isin(pinned_rows)].copy()
# 置顶行按排名从小到大排序(保持排名顺序)
if not pinned_df.empty:
pinned_df = pinned_df.sort_values('排名', ascending=True)
# 未置顶行保持当前的排序(不强制按排名排序)
# 这样可以保持用户选择的排序方式
# 合并数据:置顶行在前,其他行在后
if not pinned_df.empty:
display_df = pd.concat([pinned_df, unpinned_df], ignore_index=True)
else:
display_df = unpinned_df
else:
# 没有置顶时,保持当前排序(不强制按排名排序)
display_df = df.reset_index(drop=True)
# 添加行ID用于显示
display_df['row_id'] = display_df.index
# 生成HTML表格
html = """
<div style="overflow-x: auto; width: 100%;">
<style>
.sort-btn {
background: none;
border: none;
cursor: pointer;
margin-left: 5px;
font-size: 12px;
color: #007bff;
padding: 2px 4px;
border-radius: 3px;
}
.sort-btn:hover {
background-color: #e9ecef;
}
.sort-btn:active {
background-color: #dee2e6;
}
.pin-btn {
background: none;
border: none;
cursor: pointer;
font-size: 16px;
padding: 2px 4px;
margin-right: 8px;
border-radius: 3px;
}
.pin-btn:hover {
background-color: #e9ecef;
}
.pinned-row {
background-color: #e3f2fd !important;
border-left: 4px solid #2196f3 !important;
}
</style>
<table style="width: 100%; border-collapse: collapse; margin: 20px 0; font-size: 14px;">
<thead>
<tr style="background-color: #f8f9fa; border-bottom: 2px solid #dee2e6;">
"""
# 添加表头(钉子列 + 其他列)
html += '<th style="padding: 12px 8px; text-align: center; border: 1px solid #dee2e6; font-weight: bold; width: 50px;">📌</th>'
for col in display_df.columns:
if col == 'row_id': # 跳过内部使用的row_id列
continue
html += f'''
<th style="padding: 12px 8px; text-align: left; border: 1px solid #dee2e6; font-weight: bold;">
{col}
</th>
'''
html += """
</tr>
</thead>
<tbody>
"""
# 添加数据行
for idx, row in display_df.iterrows():
row_rank = row['排名'] # 使用排名号而不是row_id
is_pinned = row_rank in pinned_rows if pinned_rows else False
# 为前三名添加特殊样式,置顶行添加置顶样式
row_style = ""
if is_pinned:
row_style = "background-color: #e3f2fd; border-left: 4px solid #2196f3;"
elif row['排名'] <= 3:
row_style = "background-color: #fff3cd;"
elif idx % 2 == 0:
row_style = "background-color: #f8f9fa;"
html += f'<tr style="{row_style}">'
# 添加钉子状态显示列
pin_icon = "📌" if is_pinned else "📍"
html += f'''
<td style="padding: 10px 8px; border: 1px solid #dee2e6; text-align: center;">
<span title="排名: {row_rank}">
{pin_icon}
</span>
</td>
'''
for col in display_df.columns:
if col == 'row_id': # 跳过内部使用的row_id列
continue
cell_value = row[col]
cell_style = "padding: 10px 8px; border: 1px solid #dee2e6; text-align: left;"
# 特殊处理使用链接列
if col == "使用链接" and cell_value != "-" and pd.notna(cell_value):
cell_content = f'<a href="{cell_value}" target="_blank" style="color: #007bff; text-decoration: none;">尝试使用</a>'
# 特殊处理平均分列
elif col == "平均分" and cell_value != "-":
cell_style += " font-weight: bold; color: #28a745;"
cell_content = str(cell_value)
else:
cell_content = str(cell_value) if pd.notna(cell_value) else "-"
html += f'<td style="{cell_style}">{cell_content}</td>'
html += '</tr>'
html += """
</tbody>
</table>
<script>
// 简化的脚本,只保留必要功能
console.log('医疗多模态大模型排行榜已加载');
</script>
</div>
"""
return html
# 创建Gradio界面
with gr.Blocks(title="医疗大模型排行榜", theme=gr.themes.Soft(), css="""
.responsive-table {
width: 100%;
overflow-x: auto;
}
.responsive-table table {
width: 100%;
min-width: 800px;
}
/* 确保表格内容不会被截断 */
.responsive-table td {
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
}
/* 平均分列样式 */
.responsive-table td:nth-child(3) {
font-weight: bold;
}
""") as demo:
gr.Markdown("# 🤖 医疗大模型排行榜")
gr.Markdown("欢迎来到 RS Medical LLM Leaderboard 排行榜!这里展示了医疗领域大语言模型和医疗多模态模型的性能排名。我们是一个中立的评估机构,旨在将模型性能公平的进行比较。我们将在未来推出医版 Arena 平台。")
with gr.Tabs():
# 医疗大语言模型排行榜标签页
with gr.TabItem("💬 医疗大语言模型排行榜"):
# 筛选选项放在上方
with gr.Row():
llm_type_filter = gr.Dropdown(
choices=["全部", "开源", "商业"],
value="全部",
label="模型类型",
scale=1
)
llm_min_score = gr.Slider(
minimum=0,
maximum=80,
value=0,
step=5,
label="最低平均分",
scale=2
)
llm_refresh_btn = gr.Button("🔄 刷新数据", variant="primary", scale=1)
# 排序选项
with gr.Row():
llm_sort_column = gr.Dropdown(
choices=["排名", "模型名称", "平均分", "MMMU-Med", "VQA-RAD", "SLAKE", "PathVQA", "PMC-VQA", "OMVQA", "MedXQA", "最后更新", "类型"],
value="排名",
label="排序列",
scale=2
)
llm_sort_order = gr.Radio(
choices=[("升序 ↑", "asc"), ("降序 ↓", "desc")],
value="desc",
label="排序方式",
scale=1
)
with gr.Column(scale=1):
llm_default_sort_btn = gr.Button("↩️ 默认排序", variant="primary", scale=1)
# 置顶控制
with gr.Row():
llm_pin_input = gr.Textbox(
label="置顶行号(用逗号分隔多个行号,如:1,3,5)",
placeholder="输入要置顶的行号",
scale=2
)
with gr.Column(scale=1):
llm_pin_btn = gr.Button("📌 应用置顶", variant="primary", scale=1)
llm_clear_pin_btn = gr.Button("🗑️ 清除置顶", variant="primary", scale=1)
# 置顶状态(隐藏)
llm_pinned_state = gr.State(value=set())
# 使用HTML组件显示带链接的表格
llm_leaderboard_html = gr.HTML(
value=generate_llm_html_table(pinned_rows=set()),
label="医疗大语言模型排行榜"
)
# 医疗多模态大模型排行榜标签页
with gr.TabItem("👁️ 医疗多模态大模型排行榜"):
# 筛选选项放在上方
with gr.Row():
multimodal_type_filter = gr.Dropdown(
choices=["全部", "开源", "商业"],
value="全部",
label="模型类型",
scale=1
)
multimodal_min_score = gr.Slider(
minimum=0,
maximum=80,
value=0,
step=5,
label="最低平均分",
scale=2
)
multimodal_refresh_btn = gr.Button("🔄 刷新数据", variant="primary", scale=1)
# 排序选项
with gr.Row():
sort_column = gr.Dropdown(
choices=["排名", "模型名称", "平均分", "MMMU-Med", "VQA-RAD", "SLAKE", "PathVQA", "PMC-VQA", "OMVQA", "MedXQA", "最后更新", "类型"],
value="排名",
label="排序列",
scale=2
)
sort_order = gr.Radio(
choices=[("升序 ↑", "asc"), ("降序 ↓", "desc")],
value="desc",
label="排序方式",
scale=1
)
with gr.Column(scale=1):
# sort_btn = gr.Button("🔄 应用排序", variant="secondary", scale=1)
default_sort_btn = gr.Button("↩️ 默认排序", variant="primary", scale=1)
# 置顶控制
with gr.Row():
pin_input = gr.Textbox(
label="置顶行号(用逗号分隔多个行号,如:1,3,5)",
placeholder="输入要置顶的行号",
scale=2
)
with gr.Column(scale=1):
pin_btn = gr.Button("📌 应用置顶", variant="primary", scale=1)
clear_pin_btn = gr.Button("🗑️ 清除置顶", variant="primary", scale=1)
# 置顶状态(隐藏)
pinned_state = gr.State(value=set())
# 使用HTML组件显示带链接的表格
multimodal_leaderboard_html = gr.HTML(
value=generate_multimodal_html_table(pinned_rows=set()),
label="医疗多模态大模型排行榜"
)
# 事件处理函数
def update_llm_leaderboard_html(type_filter, min_score, sort_col=None, sort_ord="desc", pinned_rows=None):
if pinned_rows is None:
pinned_rows = set()
filtered_df = filter_llm_leaderboard(type_filter, min_score)
return generate_llm_html_table(filtered_df, sort_col, sort_ord, pinned_rows)
def sort_llm_table(type_filter, min_score, sort_col, sort_ord, pinned_rows):
filtered_df = filter_llm_leaderboard(type_filter, min_score)
return generate_llm_html_table(filtered_df, sort_col, sort_ord, pinned_rows)
def default_sort_llm_table(type_filter, min_score, pinned_rows):
"""恢复默认排序(按平均分排名)"""
filtered_df = filter_llm_leaderboard(type_filter, min_score)
html_table = generate_llm_html_table(filtered_df, None, "desc", pinned_rows)
# 返回表格和重置后的排序选项
return html_table, "排名", "desc"
def apply_llm_pin(pin_input_text, type_filter, min_score, sort_col, sort_ord, current_pinned):
"""应用置顶设置"""
try:
if pin_input_text.strip():
# 解析输入的排名号(用户输入的是1,2,3...)
pin_numbers = [int(x.strip()) for x in pin_input_text.split(',') if x.strip()]
# 直接使用排名号,不需要转换
new_pinned = set(n for n in pin_numbers if n > 0)
else:
new_pinned = set()
filtered_df = filter_llm_leaderboard(type_filter, min_score)
html_table = generate_llm_html_table(filtered_df, sort_col, sort_ord, new_pinned)
return html_table, new_pinned
except ValueError:
# 如果输入格式错误,保持当前状态
filtered_df = filter_llm_leaderboard(type_filter, min_score)
html_table = generate_llm_html_table(filtered_df, sort_col, sort_ord, current_pinned)
return html_table, current_pinned
def clear_llm_pin(type_filter, min_score, sort_col, sort_ord):
"""清除所有置顶"""
filtered_df = filter_llm_leaderboard(type_filter, min_score)
html_table = generate_llm_html_table(filtered_df, sort_col, sort_ord, set())
return html_table, set(), ""
def update_multimodal_leaderboard_html(type_filter, min_score, sort_col=None, sort_ord="desc", pinned_rows=None):
if pinned_rows is None:
pinned_rows = set()
filtered_df = filter_multimodal_leaderboard(type_filter, min_score)
return generate_multimodal_html_table(filtered_df, sort_col, sort_ord, pinned_rows)
def sort_multimodal_table(type_filter, min_score, sort_col, sort_ord, pinned_rows):
filtered_df = filter_multimodal_leaderboard(type_filter, min_score)
return generate_multimodal_html_table(filtered_df, sort_col, sort_ord, pinned_rows)
def default_sort_multimodal_table(type_filter, min_score, pinned_rows):
"""恢复默认排序(按平均分排名)"""
filtered_df = filter_multimodal_leaderboard(type_filter, min_score)
html_table = generate_multimodal_html_table(filtered_df, None, "desc", pinned_rows)
# 返回表格和重置后的排序选项
return html_table, "排名", "desc"
def apply_pin(pin_input_text, type_filter, min_score, sort_col, sort_ord, current_pinned):
"""应用置顶设置"""
try:
if pin_input_text.strip():
# 解析输入的排名号(用户输入的是1,2,3...)
pin_numbers = [int(x.strip()) for x in pin_input_text.split(',') if x.strip()]
# 直接使用排名号,不需要转换
new_pinned = set(n for n in pin_numbers if n > 0)
else:
new_pinned = set()
filtered_df = filter_multimodal_leaderboard(type_filter, min_score)
html_table = generate_multimodal_html_table(filtered_df, sort_col, sort_ord, new_pinned)
return html_table, new_pinned
except ValueError:
# 如果输入格式错误,保持当前状态
filtered_df = filter_multimodal_leaderboard(type_filter, min_score)
html_table = generate_multimodal_html_table(filtered_df, sort_col, sort_ord, current_pinned)
return html_table, current_pinned
def clear_pin(type_filter, min_score, sort_col, sort_ord):
"""清除所有置顶"""
filtered_df = filter_multimodal_leaderboard(type_filter, min_score)
html_table = generate_multimodal_html_table(filtered_df, sort_col, sort_ord, set())
return html_table, set(), ""
# 绑定事件 - 医疗大语言模型
llm_type_filter.change(
fn=sort_llm_table,
inputs=[llm_type_filter, llm_min_score, llm_sort_column, llm_sort_order, llm_pinned_state],
outputs=llm_leaderboard_html
)
llm_min_score.change(
fn=sort_llm_table,
inputs=[llm_type_filter, llm_min_score, llm_sort_column, llm_sort_order, llm_pinned_state],
outputs=llm_leaderboard_html
)
llm_refresh_btn.click(
fn=sort_llm_table,
inputs=[llm_type_filter, llm_min_score, llm_sort_column, llm_sort_order, llm_pinned_state],
outputs=llm_leaderboard_html
)
# 排序功能绑定 - 医疗大语言模型
llm_sort_column.change(
fn=sort_llm_table,
inputs=[llm_type_filter, llm_min_score, llm_sort_column, llm_sort_order, llm_pinned_state],
outputs=llm_leaderboard_html
)
llm_sort_order.change(
fn=sort_llm_table,
inputs=[llm_type_filter, llm_min_score, llm_sort_column, llm_sort_order, llm_pinned_state],
outputs=llm_leaderboard_html
)
# 默认排序按钮绑定 - 医疗大语言模型
llm_default_sort_btn.click(
fn=default_sort_llm_table,
inputs=[llm_type_filter, llm_min_score, llm_pinned_state],
outputs=[llm_leaderboard_html, llm_sort_column, llm_sort_order]
)
# 置顶功能绑定 - 医疗大语言模型
llm_pin_btn.click(
fn=apply_llm_pin,
inputs=[llm_pin_input, llm_type_filter, llm_min_score, llm_sort_column, llm_sort_order, llm_pinned_state],
outputs=[llm_leaderboard_html, llm_pinned_state]
)
llm_clear_pin_btn.click(
fn=clear_llm_pin,
inputs=[llm_type_filter, llm_min_score, llm_sort_column, llm_sort_order],
outputs=[llm_leaderboard_html, llm_pinned_state, llm_pin_input]
)
# 绑定事件 - 医疗多模态大模型
multimodal_type_filter.change(
fn=sort_multimodal_table,
inputs=[multimodal_type_filter, multimodal_min_score, sort_column, sort_order, pinned_state],
outputs=multimodal_leaderboard_html
)
multimodal_min_score.change(
fn=sort_multimodal_table,
inputs=[multimodal_type_filter, multimodal_min_score, sort_column, sort_order, pinned_state],
outputs=multimodal_leaderboard_html
)
multimodal_refresh_btn.click(
fn=sort_multimodal_table,
inputs=[multimodal_type_filter, multimodal_min_score, sort_column, sort_order, pinned_state],
outputs=multimodal_leaderboard_html
)
# 排序功能绑定
# sort_btn.click(
# fn=sort_multimodal_table,
# inputs=[multimodal_type_filter, multimodal_min_score, sort_column, sort_order, pinned_state],
# outputs=multimodal_leaderboard_html
# )
sort_column.change(
fn=sort_multimodal_table,
inputs=[multimodal_type_filter, multimodal_min_score, sort_column, sort_order, pinned_state],
outputs=multimodal_leaderboard_html
)
sort_order.change(
fn=sort_multimodal_table,
inputs=[multimodal_type_filter, multimodal_min_score, sort_column, sort_order, pinned_state],
outputs=multimodal_leaderboard_html
)
# 默认排序按钮绑定
default_sort_btn.click(
fn=default_sort_multimodal_table,
inputs=[multimodal_type_filter, multimodal_min_score, pinned_state],
outputs=[multimodal_leaderboard_html, sort_column, sort_order]
)
# 置顶功能绑定
pin_btn.click(
fn=apply_pin,
inputs=[pin_input, multimodal_type_filter, multimodal_min_score, sort_column, sort_order, pinned_state],
outputs=[multimodal_leaderboard_html, pinned_state]
)
clear_pin_btn.click(
fn=clear_pin,
inputs=[multimodal_type_filter, multimodal_min_score, sort_column, sort_order],
outputs=[multimodal_leaderboard_html, pinned_state, pin_input]
)
if __name__ == "__main__":
demo.launch(
# server_name="0.0.0.0",
# server_port=7863,
share=False,
show_error=True
)
|