import torch
import streamlit as st

from PIL import Image
from io import BytesIO
from transformers import VisionEncoderDecoderModel, VisionEncoderDecoderConfig , DonutProcessor


def run_prediction(sample):
    global pretrained_model, processor, task_prompt
    if isinstance(sample, dict):
        # prepare inputs
        pixel_values = torch.tensor(sample["pixel_values"]).unsqueeze(0)
    else:  # sample is an image
        # prepare encoder inputs
        pixel_values = processor(image, return_tensors="pt").pixel_values
    
    decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids

    # run inference
    outputs = pretrained_model.generate(
        pixel_values.to(device),
        decoder_input_ids=decoder_input_ids.to(device),
        max_length=pretrained_model.decoder.config.max_position_embeddings,
        early_stopping=True,
        pad_token_id=processor.tokenizer.pad_token_id,
        eos_token_id=processor.tokenizer.eos_token_id,
        use_cache=True,
        num_beams=1,
        bad_words_ids=[[processor.tokenizer.unk_token_id]],
        return_dict_in_generate=True,
    )

    # process output
    prediction = processor.batch_decode(outputs.sequences)[0]
    
    # post-processing
    if "cord" in task_prompt:
        prediction = prediction.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
        # prediction = re.sub(r"<.*?>", "", prediction, count=1).strip()  # remove first task start token
    prediction = processor.token2json(prediction)
    
    # load reference target
    if isinstance(sample, dict):
        target = processor.token2json(sample["target_sequence"])
    else:
        target = "<not_provided>"
    
    return prediction, target
    

task_prompt = f"<s>"

logo = Image.open("./img/rsz_unstructured_logo.png")
st.image(logo)

st.markdown('''
### Receipt Parser
This is an OCR-free Document Understanding Transformer nicknamed 🍩. It was fine-tuned with 1000 receipt images -> SROIE dataset.
The original 🍩 implementation can be found on [here](https://github.com/clovaai/donut).

At [Unstructured.io](https://github.com/Unstructured-IO/unstructured) we are on a mission to build custom preprocessing pipelines for labeling, training, or production ML-ready pipelines 🤩. 
Come and join us in our public repos and contribute! Each of your contributions and feedback holds great value and is very significant to the community 😊.
''')

image_upload = None
photo = None
with st.sidebar:
    information = st.radio(
    "What information inside the 🧾s are you interested in extracting?",
    ('Receipt Summary', 'Receipt Menu Details', 'Extract all', 'Unstructured.io Parser'))
    receipt = st.selectbox('Pick one 🧾', ['1', '2', '3', '4', '5', '6'], index=1)

    # file upload
    uploaded_file = st.file_uploader("Upload a 🧾")
    if uploaded_file is not None:
        # To read file as bytes:
        image_bytes_data = uploaded_file.getvalue()
        image_upload = Image.open(BytesIO(image_bytes_data))  #.frombytes('RGBA', (128,128), image_bytes_data, 'raw')
        # st.write(bytes_data)

    camera_click = st.button('Use my camera')
    img_file_buffer = None
    if camera_click:
        img_file_buffer = st.camera_input("Take a picture of your receipt!")
    
    if img_file_buffer:
        # To read image file buffer as a PIL Image:
        photo = Image.open(img_file_buffer)
        st.info("picture taken!")
        
st.text(f'{information} mode is ON!\nTarget 🧾: {receipt}')  # \n(opening image @:./img/receipt-{receipt}.png)')

col1, col2 = st.columns(2)

if photo:
    image = photo
    st.info("photo loaded to image")
elif image_upload:
    image = image_upload
else:
    image = Image.open(f"./img/receipt-{receipt}.jpg")
with col1:
    st.image(image, caption='Your target receipt')

if st.button('Parse receipt! 🐍'):
    with st.spinner(f'baking the 🍩s...'):
        if information == 'Receipt Summary':
            processor = DonutProcessor.from_pretrained("unstructuredio/donut-base-sroie")
            pretrained_model = VisionEncoderDecoderModel.from_pretrained("unstructuredio/donut-base-sroie")
            task_prompt = f"<s>"
            device = "cuda" if torch.cuda.is_available() else "cpu"
            pretrained_model.to(device)
        
        elif information == 'Receipt Menu Details':
            processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
            pretrained_model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
            task_prompt = f"<s_cord-v2>"
            device = "cuda" if torch.cuda.is_available() else "cpu"
            pretrained_model.to(device)
            
        elif information == 'Unstructured.io Parser':
            processor = DonutProcessor.from_pretrained("unstructuredio/donut-base-labelstudio-A1.0")
            pretrained_model = VisionEncoderDecoderModel.from_pretrained("unstructuredio/donut-base-labelstudio-A1.0")
            task_prompt = f"<s>"
            device = "cuda" if torch.cuda.is_available() else "cpu"
            pretrained_model.to(device)
            
        else:  # Extract all
            processor_a = DonutProcessor.from_pretrained("unstructuredio/donut-base-sroie")
            processor_b = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
            pretrained_model_a = VisionEncoderDecoderModel.from_pretrained("unstructuredio/donut-base-sroie")
            pretrained_model_b = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
            device = "cuda" if torch.cuda.is_available() else "cpu"
        
    with col2:
        if information == 'Extract all':
            st.info(f'parsing 🧾 (extracting all)...')
            pretrained_model, processor, task_prompt = pretrained_model_a, processor_a, f"<s>"
            pretrained_model.to(device)
            parsed_receipt_info_a, _ = run_prediction(image)
            pretrained_model, processor, task_prompt = pretrained_model_b, processor_b, f"<s_cord-v2>"
            pretrained_model.to(device)
            parsed_receipt_info_b, _ = run_prediction(image)
            st.text(f'\nReceipt Summary:')
            st.json(parsed_receipt_info_a)
            st.text(f'\nReceipt Menu Details:')
            st.json(parsed_receipt_info_b)
        else:
            st.info(f'parsing 🧾...')
            parsed_receipt_info, _ = run_prediction(image)
            st.text(f'\n{information}')
            st.json(parsed_receipt_info)