import gradio as gr from transformers import AutoProcessor, BlipForConditionalGeneration # from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, Blip2ForConditionalGeneration, VisionEncoderDecoderModel import torch blip_processor_large = AutoProcessor.from_pretrained("umm-maybe/image-generator-identifier") blip_model_large = BlipForConditionalGeneration.from_pretrained("umm-maybe/image-generator-identifier") device = "cuda" if torch.cuda.is_available() else "cpu" blip_model_large.to(device) def generate_caption(processor, model, image, tokenizer=None, use_float_16=False): inputs = processor(images=image, return_tensors="pt").to(device) if use_float_16: inputs = inputs.to(torch.float16) generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50) if tokenizer is not None: generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] else: generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_caption def generate_captions(image): caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image) return caption_blip_large examples = [["australia.jpg"], ["biden.png"], ["elon.jpg"], ["horns.jpg"], ["man.jpg"], ["nun.jpg"], ["painting.jpg"], ["pentagon.jpg"], ["pollock.jpg"], ["radcliffe.jpg"], ["split.jpg"], ["waves.jpg"], ["yeti.jpg"]] outputs = [ gr.outputs.Textbox(label="Caption including detected generator (if applicable)"), ] title = "Generator Identification via Image Captioning" description = "Gradio Demo to illustrate the use of a fine-tuned BLIP image captioning to identify synthetic images. To use it, simply upload your image and click 'submit', or click one of the examples to load them." interface = gr.Interface(fn=generate_captions, inputs=gr.inputs.Image(type="pil"), outputs=outputs, examples=examples, title=title, description=description, enable_queue=True) interface.launch()