Spaces:
Running
on
Zero
Running
on
Zero
# modified from https://github.com/haotian-liu/LLaVA/blob/7ace501183c4bdec6052ec1a30039cdc3242a67c/llava/train/train.py | |
import os | |
import copy | |
from dataclasses import dataclass, field | |
import json | |
import logging | |
import pathlib | |
from typing import Dict, Optional, Sequence, List | |
import torch | |
import transformers | |
from torch.utils.data import Dataset | |
from llava.train.llava_trainer import LLaVATrainer | |
from llava import conversation as conversation_lib | |
from llava.model import * | |
from PIL import Image | |
import torch.nn as nn | |
# TODO: import and use code from ../data/dataset.py | |
IGNORE_INDEX = -100 | |
DEFAULT_PAD_TOKEN = "[PAD]" | |
DEFAULT_EOS_TOKEN = "</s>" | |
DEFAULT_BOS_TOKEN = "<s>" | |
DEFAULT_UNK_TOKEN = "<unk>" | |
DEFAULT_IMAGE_TOKEN = "<image>" | |
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>" | |
DEFAULT_IM_START_TOKEN = "<im_start>" | |
DEFAULT_IM_END_TOKEN = "<im_end>" | |
import io, base64, pickle, random | |
from tqdm import tqdm | |
import numpy as np | |
def b2f(b): return Image.open(io.BytesIO(base64.b64decode(b))).convert('RGB') | |
def resize(f): | |
w, h = f.size | |
if w>h: | |
p = (w-h)//2 | |
f = f.crop([p, 0, p+h, h]) | |
elif h>w: | |
p = (h-w)//2 | |
f = f.crop([0, p, w, p+w]) | |
f = f.resize([512, 512]) | |
return f | |
def img2npy(f): return (2.0*np.array(f)/255.0-1.0).transpose((2, 0, 1)).astype(np.float32) | |
class ModelArguments: | |
model_name_or_path: Optional[str] = field(default="facebook/opt-125m") | |
version: Optional[str] = field(default="v0") | |
freeze_backbone: bool = field(default=False) | |
tune_mm_mlp_adapter: bool = field(default=False) | |
vision_tower: Optional[str] = field(default=None) | |
mm_vision_select_layer: Optional[int] = field(default=-1) # default to the last layer | |
pretrain_mm_mlp_adapter: Optional[str] = field(default=None) | |
mm_use_im_start_end: bool = field(default=False) | |
class DataArguments: | |
data_path: str = field(default=None, | |
metadata={"help": "Path to the training data."}) | |
lazy_preprocess: bool = False | |
is_multimodal: bool = False | |
sep_image_conv_front: bool = False | |
image_token_len: int = 0 | |
image_folder: Optional[str] = field(default=None) | |
image_aspect_ratio: str = 'square' | |
class TrainingArguments(transformers.TrainingArguments): | |
cache_dir: Optional[str] = field(default=None) | |
optim: str = field(default="adamw_torch") | |
remove_unused_columns: bool = field(default=False) | |
freeze_mm_mlp_adapter: bool = field(default=False) | |
force_fsdp: bool = field(default=False) | |
model_max_length: int = field( | |
default=512, | |
metadata={ | |
"help": | |
"Maximum sequence length. Sequences will be right padded (and possibly truncated)." | |
}, | |
) | |
double_quant: bool = field( | |
default=True, | |
metadata={"help": "Compress the quantization statistics through double quantization."} | |
) | |
quant_type: str = field( | |
default="nf4", | |
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."} | |
) | |
bits: int = field( | |
default=16, | |
metadata={"help": "How many bits to use."} | |
) | |
lora_enable: bool = False | |
lora_r: int = 64 | |
lora_alpha: int = 16 | |
lora_dropout: float = 0.05 | |
lora_weight_path: str = "" | |
lora_bias: str = "none" | |
def maybe_zero_3(param, ignore_status=False, name=None): | |
from deepspeed import zero | |
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus | |
if hasattr(param, "ds_id"): | |
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: | |
if not ignore_status: | |
logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}") | |
with zero.GatheredParameters([param]): | |
param = param.data.detach().cpu().clone() | |
else: | |
param = param.detach().cpu().clone() | |
return param | |
# Borrowed from peft.utils.get_peft_model_state_dict | |
def get_peft_state_maybe_zero_3(named_params, bias): | |
if bias == "none": | |
to_return = {k: t for k, t in named_params if "lora_" in k} | |
elif bias == "all": | |
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} | |
elif bias == "lora_only": | |
to_return = {} | |
maybe_lora_bias = {} | |
lora_bias_names = set() | |
for k, t in named_params: | |
if "lora_" in k: | |
to_return[k] = t | |
bias_name = k.split("lora_")[0] + "bias" | |
lora_bias_names.add(bias_name) | |
elif "bias" in k: | |
maybe_lora_bias[k] = t | |
for k, t in maybe_lora_bias: | |
if bias_name in lora_bias_names: | |
to_return[bias_name] = t | |
else: | |
raise NotImplementedError | |
to_return = {k: maybe_zero_3(v, name=k) for k, v in to_return.items()} | |
return to_return | |
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True): | |
to_return = {k: t for k, t in named_params if "lora_" not in k} | |
if require_grad_only: | |
to_return = {k: t for k, t in to_return.items() if t.requires_grad} | |
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} | |
return to_return | |
def find_all_linear_names(model): | |
cls = torch.nn.Linear | |
lora_module_names = set() | |
for name, module in model.named_modules(): | |
if isinstance(module, cls): | |
names = name.split('.') | |
lora_module_names.add(names[0] if len(names) == 1 else names[-1]) | |
if 'lm_head' in lora_module_names: # needed for 16-bit | |
lora_module_names.remove('lm_head') | |
return list(lora_module_names) | |
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, | |
output_dir: str): | |
"""Collects the state dict and dump to disk.""" | |
if trainer.deepspeed: | |
torch.cuda.synchronize() | |
trainer.save_model(output_dir) | |
return | |
state_dict = trainer.model.state_dict() | |
if trainer.args.should_save: | |
cpu_state_dict = { | |
key: value.cpu() | |
for key, value in state_dict.items() | |
} | |
del state_dict | |
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa | |
def smart_tokenizer_and_embedding_resize( | |
special_tokens_dict: Dict, | |
tokenizer: transformers.PreTrainedTokenizer, | |
model: transformers.PreTrainedModel, | |
): | |
"""Resize tokenizer and embedding. | |
Note: This is the unoptimized version that may make your embedding size not be divisible by 64. | |
""" | |
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) | |
model.resize_token_embeddings(len(tokenizer)) | |
if num_new_tokens > 0: | |
input_embeddings = model.get_input_embeddings().weight.data | |
output_embeddings = model.get_output_embeddings().weight.data | |
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( | |
dim=0, keepdim=True) | |
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( | |
dim=0, keepdim=True) | |
input_embeddings[-num_new_tokens:] = input_embeddings_avg | |
output_embeddings[-num_new_tokens:] = output_embeddings_avg | |
def _tokenize_fn(strings: Sequence[str], | |
tokenizer: transformers.PreTrainedTokenizer) -> Dict: | |
"""Tokenize a list of strings.""" | |
tokenized_list = [ | |
tokenizer( | |
text, | |
return_tensors="pt", | |
padding="longest", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
) for text in strings | |
] | |
input_ids = labels = [ | |
tokenized.input_ids[0] for tokenized in tokenized_list | |
] | |
input_ids_lens = labels_lens = [ | |
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() | |
for tokenized in tokenized_list | |
] | |
return dict( | |
input_ids=input_ids, | |
labels=labels, | |
input_ids_lens=input_ids_lens, | |
labels_lens=labels_lens, | |
) | |
def _mask_targets(target, tokenized_lens, speakers): | |
# cur_idx = 0 | |
cur_idx = tokenized_lens[0] | |
tokenized_lens = tokenized_lens[1:] | |
target[:cur_idx] = IGNORE_INDEX | |
for tokenized_len, speaker in zip(tokenized_lens, speakers): | |
if speaker == "human": | |
target[cur_idx+2:cur_idx + tokenized_len] = IGNORE_INDEX | |
cur_idx += tokenized_len | |
def _add_speaker_and_signal(header, source, get_conversation=True): | |
"""Add speaker and start/end signal on each round.""" | |
BEGIN_SIGNAL = "### " | |
END_SIGNAL = "\n" | |
conversation = header | |
for sentence in source: | |
from_str = sentence["from"] | |
if from_str.lower() == "human": | |
from_str = conversation_lib.default_conversation.roles[0] | |
elif from_str.lower() == "gpt": | |
from_str = conversation_lib.default_conversation.roles[1] | |
else: | |
from_str = 'unknown' | |
sentence["value"] = (BEGIN_SIGNAL + from_str + ": " + | |
sentence["value"] + END_SIGNAL) | |
if get_conversation: | |
conversation += sentence["value"] | |
conversation += BEGIN_SIGNAL | |
return conversation | |
def preprocess_multimodal( | |
sources: Sequence[str], | |
multimodal_cfg: dict, | |
cur_token_len: int, | |
) -> Dict: | |
is_multimodal = multimodal_cfg['is_multimodal'] | |
# image_token_len = multimodal_cfg['image_token_len'] | |
image_token_len = cur_token_len | |
if not is_multimodal: | |
return sources | |
for source in sources: | |
if multimodal_cfg['sep_image_conv_front']: | |
assert DEFAULT_IMAGE_TOKEN in source[0]['value'] | |
source[0]['value'] = source[0]['value'].replace(DEFAULT_IMAGE_TOKEN, '').strip() | |
source[0]['value'] = DEFAULT_IMAGE_TOKEN + conversation_lib.default_conversation.sep + conversation_lib.default_conversation.roles[0] + ": " + source[0]['value'] | |
for sentence in source: | |
replace_token = DEFAULT_IMAGE_PATCH_TOKEN * image_token_len | |
if multimodal_cfg['use_im_start_end']: | |
replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN | |
sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token) | |
return sources | |
def preprocess_v1( | |
sources, | |
tokenizer: transformers.PreTrainedTokenizer, | |
) -> Dict: | |
conv = conversation_lib.default_conversation.copy() | |
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} | |
# Apply prompt templates | |
conversations = [] | |
for i, source in enumerate(sources): | |
if roles[source[0]["from"]] != conv.roles[0]: | |
# Skip the first one if it is not from human | |
source = source[1:] | |
conv.messages = [] | |
for j, sentence in enumerate(source): | |
role = roles[sentence["from"]] | |
assert role == conv.roles[j % 2], f"{i}" | |
conv.append_message(role, sentence["value"]) | |
conversations.append(conv.get_prompt()) | |
# Tokenize conversations | |
input_ids = tokenizer( | |
conversations, | |
return_tensors="pt", | |
padding="longest", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
).input_ids | |
targets = input_ids.clone() | |
assert conv.sep_style == conversation_lib.SeparatorStyle.TWO | |
# Mask targets | |
sep = conv.sep + conv.roles[1] + ": " | |
for conversation, target in zip(conversations, targets): | |
total_len = int(target.ne(tokenizer.pad_token_id).sum()) | |
rounds = conversation.split(conv.sep2) | |
cur_len = 1 | |
target[:cur_len] = IGNORE_INDEX | |
for i, rou in enumerate(rounds): | |
if rou == "": | |
break | |
parts = rou.split(sep) | |
if len(parts) != 2: | |
break | |
parts[0] += sep | |
round_len = len(tokenizer(rou).input_ids) | |
instruction_len = len(tokenizer(parts[0]).input_ids) - 2 | |
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX | |
cur_len += round_len | |
target[cur_len:] = IGNORE_INDEX | |
if cur_len < tokenizer.model_max_length: | |
if cur_len != total_len: | |
target[:] = IGNORE_INDEX | |
print( | |
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." | |
f" (ignored)" | |
) | |
return dict( | |
input_ids=input_ids, | |
labels=targets, | |
) | |
def preprocess_mpt( | |
sources, | |
tokenizer: transformers.PreTrainedTokenizer, | |
) -> Dict: | |
conv = conversation_lib.default_conversation.copy() | |
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} | |
# Apply prompt templates | |
conversations = [] | |
for i, source in enumerate(sources): | |
if roles[source[0]["from"]] != conv.roles[0]: | |
# Skip the first one if it is not from human | |
source = source[1:] | |
conv.messages = [] | |
for j, sentence in enumerate(source): | |
role = roles[sentence["from"]] | |
assert role == conv.roles[j % 2], f"{i}" | |
conv.append_message(role, sentence["value"]) | |
conversations.append(conv.get_prompt()) | |
# Tokenize conversations | |
input_ids = tokenizer( | |
conversations, | |
return_tensors="pt", | |
padding="longest", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
).input_ids | |
targets = input_ids.clone() | |
assert conv.sep_style == conversation_lib.SeparatorStyle.MPT | |
# Mask targets | |
sep = conv.sep + conv.roles[1] | |
for conversation, target in zip(conversations, targets): | |
total_len = int(target.ne(tokenizer.pad_token_id).sum()) | |
rounds = conversation.split(conv.sep) | |
re_rounds = [conv.sep.join(rounds[:3])] # system + user + gpt | |
for conv_idx in range(3, len(rounds), 2): | |
re_rounds.append(conv.sep.join(rounds[conv_idx:conv_idx+2])) # user + gpt | |
cur_len = 0 | |
target[:cur_len] = IGNORE_INDEX | |
for i, rou in enumerate(re_rounds): | |
if rou == "": | |
break | |
parts = rou.split(sep) | |
if len(parts) != 2: | |
break | |
parts[0] += sep | |
round_len = len(tokenizer(rou).input_ids) + len(tokenizer(conv.sep).input_ids) | |
instruction_len = len(tokenizer(parts[0]).input_ids) | |
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX | |
cur_len += round_len | |
target[cur_len:] = IGNORE_INDEX | |
if cur_len < tokenizer.model_max_length: | |
if cur_len != total_len: | |
target[:] = IGNORE_INDEX | |
print( | |
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." | |
f" (ignored)" | |
) | |
return dict( | |
input_ids=input_ids, | |
labels=targets, | |
) | |
def preprocess( | |
sources: Sequence[str], | |
tokenizer: transformers.PreTrainedTokenizer, | |
) -> Dict: | |
""" | |
Given a list of sources, each is a conversation list. This transform: | |
1. Add signal '### ' at the beginning each sentence, with end signal '\n'; | |
2. Concatenate conversations together; | |
3. Tokenize the concatenated conversation; | |
4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX. | |
""" | |
if conversation_lib.default_conversation.version == "v1": | |
return preprocess_v1(sources, tokenizer) | |
if conversation_lib.default_conversation.version == "mpt": | |
return preprocess_mpt(sources, tokenizer) | |
# add end signal and concatenate together | |
conversations = [] | |
for source in sources: | |
header = f"{conversation_lib.default_conversation.system}\n\n" | |
conversation = _add_speaker_and_signal(header, source) | |
conversations.append(conversation) | |
# tokenize conversations | |
conversations_tokenized = _tokenize_fn(conversations, tokenizer) | |
input_ids = conversations_tokenized["input_ids"] | |
targets = copy.deepcopy(input_ids) | |
for target, source in zip(targets, sources): | |
tokenized_lens = _tokenize_fn([header] + [s["value"] for s in source], | |
tokenizer)["input_ids_lens"] | |
speakers = [sentence["from"] for sentence in source] | |
_mask_targets(target, tokenized_lens, speakers) | |
return dict(input_ids=input_ids, labels=targets) | |
class SupervisedDataset(Dataset): | |
"""Dataset for supervised fine-tuning.""" | |
def __init__(self, data_path: str, | |
tokenizer: transformers.PreTrainedTokenizer): | |
super(SupervisedDataset, self).__init__() | |
logging.warning("Loading data...") | |
list_data_dict = json.load(open(data_path, "r")) | |
logging.warning("Formatting inputs...") | |
sources = [example["conversations"] for example in list_data_dict] | |
data_dict = preprocess(sources, tokenizer) | |
self.input_ids = data_dict["input_ids"] | |
self.labels = data_dict["labels"] | |
def __len__(self): | |
return len(self.input_ids) | |
def __getitem__(self, i) -> Dict[str, torch.Tensor]: | |
return dict(input_ids=self.input_ids[i], labels=self.labels[i]) | |
class LazySupervisedDataset(Dataset): | |
def __init__(self, data_path: str, | |
tokenizer: transformers.PreTrainedTokenizer, | |
multimodal_cfg: dict): | |
super(LazySupervisedDataset, self).__init__() | |
self.tokenizer, self.multimodal_cfg = tokenizer, multimodal_cfg | |
self.pkl, self.prompt = pickle.load(open('./_data/ipr2pr.pkl', 'rb'))['task'], json.load(open('./_data/ipr2pr_expressive.json', 'r')) | |
random.shuffle(self.pkl) | |
print('--pkl: %d--'%(len(self.pkl))) | |
def __len__(self): | |
return len(self.pkl) | |
def __getitem__(self, i) -> Dict[str, torch.Tensor]: | |
item = self.pkl[i][0] | |
tsv = open('./_data/ipr2pr.tsv', 'r') | |
tsv.seek(item['lineidx']) | |
b = tsv.readline().strip().split('\t') | |
image = resize(b2f(b[0])) | |
processor = self.multimodal_cfg['image_processor'] | |
image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0] | |
cur_token_len = (image.shape[1]//14)*(image.shape[2]//14) | |
query = "what will this image be like if '%s'\n%s"%(item['instruction'], DEFAULT_IMAGE_TOKEN) | |
ans = '%s [IMG0] [IMG1] [IMG2] [IMG3] [IMG4] [IMG5] [IMG6] [IMG7]'%(self.prompt[item['input']]['expressive']) | |
sources = preprocess_multimodal(copy.deepcopy([[{'from': 'human', 'value': query}, {'from': 'gpt', 'value': ans}]]), | |
self.multimodal_cfg, cur_token_len) | |
data_dict = preprocess(sources, self.tokenizer) | |
if isinstance(i, int): data_dict = dict(input_ids=data_dict['input_ids'][0], | |
labels=data_dict['labels'][0]) | |
data_dict['image'] = image | |
p2p_inp, p2p_ans = img2npy(resize(b2f(b[0])).resize([256, 256])), img2npy(resize(b2f(b[1])).resize([256, 256])) | |
data_dict['p2p_inp'], data_dict['p2p_ans'] = p2p_inp, p2p_ans | |
return data_dict | |
class DataCollatorForSupervisedDataset(object): | |
"""Collate examples for supervised fine-tuning.""" | |
tokenizer: transformers.PreTrainedTokenizer | |
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: | |
input_ids, labels = tuple([instance[key] for instance in instances] | |
for key in ("input_ids", "labels")) | |
input_ids = torch.nn.utils.rnn.pad_sequence( | |
input_ids, | |
batch_first=True, | |
padding_value=self.tokenizer.pad_token_id) | |
labels = torch.nn.utils.rnn.pad_sequence(labels, | |
batch_first=True, | |
padding_value=IGNORE_INDEX) | |
batch = dict( | |
input_ids=input_ids, | |
labels=labels, | |
attention_mask=input_ids.ne(self.tokenizer.pad_token_id), | |
) | |
if 'image' in instances[0]: | |
images = [instance['image'] for instance in instances] | |
if all(x is not None and x.shape == images[0].shape for x in images): | |
batch['images'] = torch.stack(images) | |
else: | |
batch['images'] = images | |
batch['p2p_inp'], batch['p2p_ans'] = [torch.cat([torch.from_numpy(d['p2p_inp']).unsqueeze(dim=0) for d in instances], dim=0), | |
torch.cat([torch.from_numpy(d['p2p_ans']).unsqueeze(dim=0) for d in instances], dim=0)] | |
return batch | |
def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, | |
data_args) -> Dict: | |
"""Make dataset and collator for supervised fine-tuning.""" | |
dataset_cls = (LazySupervisedDataset | |
if data_args.lazy_preprocess else SupervisedDataset) | |
train_dataset = dataset_cls(tokenizer=tokenizer, | |
data_path=data_args.data_path, | |
multimodal_cfg=dict( | |
is_multimodal=data_args.is_multimodal, | |
sep_image_conv_front=data_args.sep_image_conv_front, | |
image_token_len=data_args.image_token_len, | |
image_folder=data_args.image_folder, | |
image_aspect_ratio=data_args.image_aspect_ratio, | |
use_im_start_end=getattr(data_args, 'mm_use_im_start_end', False), | |
image_processor=getattr(data_args, 'image_processor', None))) | |
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer) | |
return dict(train_dataset=train_dataset, | |
eval_dataset=None, | |
data_collator=data_collator) | |
def train(): | |
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments)) | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)) | |
bnb_model_from_pretrained_args = {} | |
if training_args.bits in [4, 8]: | |
from transformers import BitsAndBytesConfig | |
from peft import prepare_model_for_int8_training | |
bnb_model_from_pretrained_args.update(dict( | |
device_map={"": training_args.device}, | |
load_in_4bit=training_args.bits == 4, | |
load_in_8bit=training_args.bits == 8, | |
quantization_config=BitsAndBytesConfig( | |
load_in_4bit=training_args.bits == 4, | |
load_in_8bit=training_args.bits == 8, | |
llm_int8_threshold=6.0, | |
llm_int8_has_fp16_weight=False, | |
bnb_4bit_compute_dtype=compute_dtype, | |
bnb_4bit_use_double_quant=training_args.double_quant, | |
bnb_4bit_quant_type=training_args.quant_type # {'fp4', 'nf4'} | |
) | |
)) | |
if model_args.vision_tower is not None: | |
if 'mpt' in model_args.model_name_or_path: | |
model = LlavaMPTForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
**bnb_model_from_pretrained_args | |
) | |
else: | |
model = LlavaLlamaForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
**bnb_model_from_pretrained_args | |
) | |
else: | |
model = transformers.LlamaForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
**bnb_model_from_pretrained_args | |
) | |
model.config.use_cache = False | |
if model_args.freeze_backbone: | |
model.model.requires_grad_(False) | |
if training_args.bits in [4, 8]: | |
model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)) | |
model = prepare_model_for_int8_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing) | |
if training_args.gradient_checkpointing and model_args.vision_tower is None: | |
if hasattr(model, "enable_input_require_grads"): | |
model.enable_input_require_grads() | |
else: | |
def make_inputs_require_grad(module, input, output): | |
output.requires_grad_(True) | |
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) | |
if training_args.lora_enable: | |
from peft import LoraConfig, get_peft_model | |
lora_config = LoraConfig( | |
r=training_args.lora_r, | |
lora_alpha=training_args.lora_alpha, | |
target_modules=find_all_linear_names(model), | |
lora_dropout=training_args.lora_dropout, | |
bias=training_args.lora_bias, | |
task_type="CAUSAL_LM", | |
) | |
if training_args.bits == 16: | |
if training_args.bf16: | |
model.to(torch.bfloat16) | |
if training_args.fp16: | |
model.to(torch.float16) | |
logging.warning("Adding LoRA adapters...") | |
model = get_peft_model(model, lora_config) | |
if 'mpt' in model_args.model_name_or_path: | |
tokenizer = transformers.AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
model_max_length=training_args.model_max_length, | |
padding_side="right" | |
) | |
else: | |
tokenizer = transformers.AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
model_max_length=training_args.model_max_length, | |
padding_side="right", | |
use_fast=False, | |
) | |
if model_args.version == "v0": | |
if tokenizer.pad_token is None: | |
smart_tokenizer_and_embedding_resize( | |
special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN), | |
tokenizer=tokenizer, | |
model=model, | |
) | |
if "llama" in model_args.model_name_or_path: | |
tokenizer.add_special_tokens({ | |
"eos_token": DEFAULT_EOS_TOKEN, | |
"bos_token": DEFAULT_BOS_TOKEN, | |
"unk_token": DEFAULT_UNK_TOKEN, | |
}) | |
else: | |
tokenizer.pad_token = tokenizer.unk_token | |
if "mpt" in model_args.model_name_or_path: | |
conversation_lib.default_conversation = conversation_lib.conv_templates["mpt"] | |
else: | |
conversation_lib.default_conversation = conversation_lib.conv_templates["vicuna_v1_1"] | |
if model_args.vision_tower is not None: | |
model_vision_dict = model.get_model().initialize_vision_modules( | |
vision_tower=model_args.vision_tower, | |
mm_vision_select_layer=model_args.mm_vision_select_layer, | |
pretrain_mm_mlp_adapter=model_args.pretrain_mm_mlp_adapter, | |
fsdp=training_args.fsdp | |
) | |
model.get_vision_tower().to(dtype=torch.float16, device=training_args.device) | |
vision_config = model_vision_dict['vision_config'] | |
data_args.image_token_len = model_vision_dict['image_token_len'] | |
data_args.image_processor = model_vision_dict['image_processor'] | |
data_args.is_multimodal = True | |
model.config.tune_mm_mlp_adapter = training_args.tune_mm_mlp_adapter = model_args.tune_mm_mlp_adapter | |
if model_args.tune_mm_mlp_adapter: | |
model.requires_grad_(False) | |
for p in model.get_model().mm_projector.parameters(): | |
p.requires_grad = True | |
model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter | |
if training_args.freeze_mm_mlp_adapter: | |
for p in model.get_model().mm_projector.parameters(): | |
p.requires_grad = False | |
if training_args.bits in [4, 8]: | |
model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device) | |
model.config.mm_use_im_start_end = data_args.mm_use_im_start_end = model_args.mm_use_im_start_end | |
vision_config.use_im_start_end = training_args.use_im_start_end = model_args.mm_use_im_start_end | |
model.config.sep_image_conv_front = data_args.sep_image_conv_front | |
model.initialize_vision_tokenizer(mm_use_im_start_end=model_args.mm_use_im_start_end, tokenizer=tokenizer, device=training_args.device, | |
tune_mm_mlp_adapter=model_args.tune_mm_mlp_adapter, pretrain_mm_mlp_adapter=model_args.pretrain_mm_mlp_adapter) | |
params_no_grad = [n for n, p in model.named_parameters() if not p.requires_grad] | |
if len(params_no_grad) > 0: | |
if training_args.fsdp is not None and len(training_args.fsdp) > 0: | |
if len(params_no_grad) < 10: | |
print('[WARNING] Attempting to use FSDP while {} parameters do not require gradients: {}'. format(len(params_no_grad), params_no_grad)) | |
else: | |
print('[WARNING] Attempting to use FSDP while {} parameters do not require gradients: {}...(omitted)'. format(len(params_no_grad), ', '.join(params_no_grad[:10]))) | |
print("[WARNING] Attempting to use FSDP with partially frozen paramters, this is experimental.") | |
print("[WARNING] As of 4/30/23, this feature requires PyTorch-nightly build. See here for details: https://github.com/haotian-liu/LLaVA#experimental-use-fsdp-to-save-memory-in-pretraining") | |
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP | |
def patch_FSDP_use_orig_params(func): | |
def wrap_func(*args, **kwargs): | |
use_orig_params = kwargs.pop('use_orig_params', True) | |
return func(*args, **kwargs, use_orig_params=use_orig_params) | |
return wrap_func | |
FSDP.__init__ = patch_FSDP_use_orig_params(FSDP.__init__) | |
if training_args.bits in [4, 8]: | |
from peft.tuners.lora import LoraLayer | |
for name, module in model.named_modules(): | |
if isinstance(module, LoraLayer): | |
if training_args.bf16: | |
module = module.to(torch.bfloat16) | |
if 'norm' in name: | |
module = module.to(torch.float32) | |
if 'lm_head' in name or 'embed_tokens' in name: | |
if hasattr(module, 'weight'): | |
if training_args.bf16 and module.weight.dtype == torch.float32: | |
module = module.to(torch.bfloat16) | |
# start for MGIE | |
os.makedirs('_log', exist_ok=True) | |
pt = {} | |
for i in tqdm(range(2)): pt.update(torch.load('./_ckpt/LLaVA-7B-v1/pytorch_model-0000%d-of-00002.bin'%(i+1), map_location='cpu')) | |
miss, unexp = model.load_state_dict(pt, strict=False) | |
print('miss:', miss), print('unexp:', unexp) | |
tokenizer.add_tokens(['[IMG0]', '[IMG1]', '[IMG2]', '[IMG3]', '[IMG4]', '[IMG5]', '[IMG6]', '[IMG7]'], special_tokens=True) | |
model.resize_token_embeddings(len(tokenizer)) | |
print(tokenizer), json.dump(tokenizer.get_vocab(), open('_log/vocabs.json', 'w'), indent=2) | |
for n, p in model.named_parameters(): | |
if 'embed_tokens' in n or 'lm_head' in n or 'edit_head' in n or 'unet' in n: p.requires_grad = True | |
else: p.requires_grad = False | |
with open('_log/parameters.txt', 'w') as F: | |
for n, p in model.named_parameters(): F.write('%s %s %s\n'%(n, str(p.shape), str(p.requires_grad))) | |
with open('_log/args_train.txt', 'w') as F: | |
for key in vars(training_args): F.write('%s: %s\n'%(str(key), str(vars(training_args)[key]))) | |
# end for MGIE | |
data_module = make_supervised_data_module(tokenizer=tokenizer, | |
data_args=data_args) | |
trainer = LLaVATrainer(model=model, | |
tokenizer=tokenizer, | |
args=training_args, | |
**data_module) | |
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): | |
trainer.train(resume_from_checkpoint=True) | |
else: | |
trainer.train() | |
trainer.save_state() | |
if training_args.lora_enable: | |
state_dict = get_peft_state_maybe_zero_3( | |
model.named_parameters(), training_args.lora_bias | |
) | |
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3( | |
model.named_parameters() | |
) | |
if training_args.local_rank == 0 or training_args.local_rank == -1: | |
model.config.save_pretrained(training_args.output_dir) | |
model.save_pretrained(training_args.output_dir, state_dict=state_dict) | |
torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin')) | |
else: | |
safe_save_model_for_hf_trainer(trainer=trainer, | |
output_dir=training_args.output_dir) | |
if __name__ == "__main__": | |
train() | |