File size: 8,320 Bytes
81a794d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import logging
import torch
from torch.nn.functional import softmax
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
from tqdm import tqdm
from collections import defaultdict

from backend.section_infer_helper.base_helper import BaseHelper
from backend.utils.data_process import split_to_file_diff, split_to_section


logger = logging.getLogger(__name__)


class LocalLLMHelper(BaseHelper):
    
    MAX_LENGTH = 4096
    MAX_NEW_TOKEN = 16
    BATCH_SIZE = 4
    
    SYSTEM_PROMPT = "You are now an expert in code vulnerability and patch fixes."
    
    def generate_instruction(language, file_name, patch, section, message = None):
        instruction =  "[TASK]\nHere is a patch in {} language and a section of this patch for a source code file with path {}. Determine if the patch section fixes any software vulnerabilities. Output 'yes' or 'no' and do not output any other text.\n".format(language, file_name)
        instruction += "[Patch]\n{}\n".format(patch)
        instruction += "[A section of this patch]\n{}\n".format(section)
        if message is not None and message != "":
            instruction += "[Message of the Patch]\n{}\n".format(message)
        
        return instruction
    
    MODEL_CONFIGS = defaultdict(lambda: {
        "supported_languages": ["C", "C++", "Java", "Python"],
    })
    
    MODEL_CONFIGS.update({
        ("Qwen/Qwen2.5-Coder-0.5B-Instruct", "backend/model/PEFT/patchouli-qwc2.5-0.5b"): {
            "supported_languages": ["C", "C++", "Java", "Python"],
        },
        ("Qwen/Qwen2.5-Coder-0.5B-Instruct", None): {
            "supported_languages": ["C", "C++", "Java", "Python"],
        },
        ("Qwen/Qwen2.5-Coder-7B-Instruct", None): {
            "supported_languages": ["C", "C++", "Java", "Python"],
        },
        ("deepseek-ai/deepseek-coder-7b-instruct-v1.5", None): {
            "supported_languages": ["C", "C++", "Java", "Python"],
        },
        ("codellama/CodeLlama-7b-Instruct-hf", None): {
            "supported_languages": ["C", "C++", "Java", "Python"],
        },
    })
    
    PREDEF_MODEL = []
    for model, peft in MODEL_CONFIGS.keys():
        if model not in PREDEF_MODEL:
            PREDEF_MODEL.append(model)
    MODEL_PEFT_MAP = defaultdict(lambda: [None])
    for model, peft in MODEL_CONFIGS.keys():
        if peft is not None:
            MODEL_PEFT_MAP[model].append(peft)

    
    def __init__(self):
        self.model = None
        self.tokenizer = None
        self.model_name_or_path = None
        self.peft_name_or_path = None
    
    
    def __del__(self):
        if self.model is not None:
            self.release_model()
    
    
    def infer(self, diff_code, message = None, batch_size = BATCH_SIZE):
        if self.model is None:
            raise RuntimeError("Model is not loaded")
        
        results = {}
        input_list = []
        file_diff_list = split_to_file_diff(diff_code, BaseHelper._get_lang_ext(LocalLLMHelper.MODEL_CONFIGS[self.model_name_or_path]["supported_languages"]))
        for file_a, _, file_diff in file_diff_list:
            sections = split_to_section(file_diff)
            file_name = file_a.removeprefix("a/")
            results[file_name] = []
            for section in sections:
                input_list.append(BaseHelper.InputData(file_name, section, section, message))

        input_prompt, output_text, output_prob = self.do_infer(input_list, batch_size)
        assert len(input_list) == len(input_prompt) == len(output_text) == len(output_prob)
        for i in range(len(input_list)):
            file_name = input_list[i].filename
            section = input_list[i].section
            output_text_i = output_text[i].lower()
            output_prob_i = output_prob[i]
            results[file_name].append({
                "section": section,
                "predict": 1 if "yes" in output_text_i else 0,
                "conf": output_prob_i
            })

        return results
    
    
    def load_model(self, model_name_or_path, peft_name_or_path = None):
        if model_name_or_path == self.model_name_or_path and peft_name_or_path == self.peft_name_or_path:
            return
        logger.info(f"Loading model {model_name_or_path}")
        
        if self.model is not None:
            self.release_model()
        self.model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.float32, device_map="auto")
        self.tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side="left")
        if peft_name_or_path is not None and peft_name_or_path != "" and peft_name_or_path != "None":
            logger.info(f"Loading PEFT model {peft_name_or_path}")
            self.model = PeftModel.from_pretrained(self.model, peft_name_or_path)
            self.tokenizer = AutoTokenizer.from_pretrained(peft_name_or_path, padding_side="left")
        if self.tokenizer.pad_token_id is None:
            self.tokenizer.pad_token = self.tokenizer.eos_token
        
        self.model.eval()
        
        self.model_name_or_path = model_name_or_path
        self.peft_name_or_path = peft_name_or_path
        logger.info(f"Model loaded")
    
    
    def generate_message(filename, patch, section, patch_message = None):
        ext = filename.split(".")[-1]
        language = BaseHelper._get_lang_by_ext(ext)
        messages = [
            {
                "role": "system",
                "content": LocalLLMHelper.SYSTEM_PROMPT
            },
            {
                "role": "user",
                "content": LocalLLMHelper.generate_instruction(language, filename, patch, section, patch_message)
            }
        ]
        return messages
    
    
    def release_model(self):
        del self.model
        del self.tokenizer
        self.model = None
        self.tokenizer = None
        torch.cuda.empty_cache()
        logger.info(f"Model {self.model_name_or_path} released")
        self.model_name_or_path = None
            

    def do_infer(self, input_list, batch_size = BATCH_SIZE):
        if type(input_list) is not list:
            input_list = [input_list]
        
        input_data_batches = [input_list[i:i+batch_size] for i in range(0, len(input_list), batch_size)]
        input_ids_list = []
        if len(input_list) > 0:
            logger.info("Example input prompt")
            logger.info(LocalLLMHelper.generate_message(input_list[0].filename, input_list[0].patch, input_list[0].section, input_list[0].patch_msg))
        
        for batch in tqdm(input_data_batches, desc="Tokenizing", unit="batch", total=len(input_data_batches)):
            message_list = []
            for input_data in batch:
                message_list.append(LocalLLMHelper.generate_message(input_data.filename, input_data.patch, input_data.section, input_data.patch_msg))
            input_ids_batch = self.tokenizer.apply_chat_template(
                message_list, 
                add_generation_prompt=True, 
                return_tensors="pt", 
                max_length=LocalLLMHelper.MAX_LENGTH,
                truncation=True,
                padding=True)
            input_ids_list.append(input_ids_batch)
        
        input_prompt = []
        output_text = []
        output_prob = []
        
        for input_ids in tqdm(input_ids_list, desc="Generating", unit="batch", total=len(input_ids_list)):
            input_ids = input_ids.to(self.model.device)
            outputs = self.model.generate(input_ids, max_new_tokens=LocalLLMHelper.MAX_NEW_TOKEN, 
                                    eos_token_id=self.tokenizer.eos_token_id, pad_token_id=self.tokenizer.pad_token_id,
                                    output_logits=True, return_dict_in_generate=True)
            
            input_prompt.extend(self.tokenizer.batch_decode(input_ids, skip_special_tokens=True))
            output_text.extend(self.tokenizer.batch_decode(outputs.sequences[:, len(input_ids[0]):], skip_special_tokens=True))
            batch_output_prob = softmax(outputs.logits[0], dim=-1).max(dim=-1).values
            output_prob.extend([float(p) for p in batch_output_prob])
        
        return input_prompt, output_text, output_prob


local_llm_helper = LocalLLMHelper()