Spaces:
Running
Running
File size: 8,608 Bytes
81a794d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import os
import json
import logging
import gradio as gr
from backend.inference import section_infer, cwe_infer, PREDEF_MODEL_MAP, LOCAL_MODEL_PEFT_MAP, PREDEF_CWE_MODEL
APP_TITLE = "PATCHOULI"
STYLE_APP_TITLE = '<div style="text-align: center; font-weight: bold; font-family: Arial, sans-serif; font-size: 44px;">' + \
'<span style="color: #14e166">PATCH</span> ' + \
'<span style="color: #14e166">O</span>bserving ' + \
'and ' + \
'<span style="color: #14e166">U</span>ntang<span style="color: #14e166">l</span>ing ' + \
'Eng<span style="color: #14e166">i</span>ne' + \
'</div>'
# from 0.00 to 1.00, 41 colors
NONVUL_GRADIENT_COLORS = ["#d3f8d6",
"#d3f8d6", "#d0f8d3", "#ccf7d0", "#c9f7cd", "#c6f6cb", "#c2f6c8", "#bff5c5", "#bcf5c2", "#b8f4bf", "#b5f4bc",
"#b1f3ba", "#aef2b7", "#aaf2b4", "#a7f1b1", "#a3f1ae", "#9ff0ab", "#9cf0a9", "#98efa6", "#94efa3", "#90eea0",
"#8ced9d", "#88ed9a", "#84ec98", "#80ec95", "#7ceb92", "#78ea8f", "#73ea8c", "#6fe989", "#6ae886", "#65e883",
"#60e781", "#5ae67e", "#55e67b", "#4fe578", "#48e475", "#41e472", "#39e36f", "#30e26c", "#25e269", "#14e166"
]
# from 0.00 to 1.00, 41 colors
VUL_GRADIENT_COLORS = ["#d3f8d6",
"#fdcfc9", "#fdccc5", "#fcc9c2", "#fcc5bf", "#fcc2bb", "#fbbfb8", "#fbbcb4", "#fab9b1", "#fab5ad", "#f9b2aa",
"#f8afa7", "#f8aca3", "#f7a8a0", "#f7a59c", "#f6a299", "#f59f96", "#f59c92", "#f4988f", "#f3958c", "#f29288",
"#f18e85", "#f18b82", "#f0887f", "#ef847c", "#ee8178", "#ed7e75", "#ec7a72", "#eb776f", "#ea736c", "#e97068",
"#e86c65", "#e76962", "#e6655f", "#e5615c", "#e45e59", "#e35a56", "#e25653", "#e05250", "#df4e4d", "#de4a4a"
]
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logging.getLogger("httpx").setLevel(logging.WARNING)
def generate_color_map():
color_map = {}
for i in range(0, 101):
color_map[f"non-vul-fixing: {i/100:0.2f}"] = NONVUL_GRADIENT_COLORS[int(i * 0.4)]
color_map[f"vul-fixing: {i/100:0.2f}"] = VUL_GRADIENT_COLORS[int(i * 0.4)]
return color_map
def on_submit(diff_code, patch_message, cwe_model, section_model_type, progress = gr.Progress(track_tqdm=True), *model_config):
if diff_code == "":
return gr.skip(), gr.skip(), gr.skip()
try:
section_results = section_infer(diff_code, patch_message, section_model_type, *model_config)
except Exception as e:
raise gr.Error(f"Error: {str(e)}")
vul_cnt = 0
for file_results in section_results.values():
for item in file_results:
if item["predict"] == 1:
vul_cnt += 1
label_text = f"Vul-fixing patch" if vul_cnt > 0 \
else f"Non-vul-fixing patch"
color = "#de4a4a" if vul_cnt > 0 else "#14e166"
patch_category_label = gr.Label(value = label_text, color = color)
if cwe_model == "":
cwe_cls_result = "No model selected"
elif vul_cnt == 0:
cwe_cls_result = "No vulnerability found"
else:
cwe_cls_result = cwe_infer(diff_code, patch_message, cwe_model)
return patch_category_label, section_results, cwe_cls_result
with gr.Blocks(title = APP_TITLE, fill_width=True) as demo:
section_results_state = gr.State({})
cls_results_state = gr.State({})
title = gr.HTML(STYLE_APP_TITLE)
with gr.Row() as main_block:
with gr.Column(scale=1) as input_block:
diff_codebox = gr.Code(label="Input git diff here", max_lines=10)
with gr.Accordion("Patch message (optional)", open=False):
message_textbox = gr.Textbox(label="Patch message", placeholder="Enter patch message here", container=False, lines=2, max_lines=5)
cwe_model_selector = gr.Dropdown(PREDEF_CWE_MODEL, label="Select vulnerability type classifier", allow_custom_value=True)
with gr.Tabs(selected=0) as model_type_tabs:
MODEL_TYPE_NAMES = list(PREDEF_MODEL_MAP.keys())
with gr.Tab(MODEL_TYPE_NAMES[0]) as local_llm_tab:
local_model_selector = gr.Dropdown(PREDEF_MODEL_MAP[MODEL_TYPE_NAMES[0]], label="Select model", allow_custom_value=True)
local_peft_selector = gr.Dropdown(LOCAL_MODEL_PEFT_MAP[local_model_selector.value], label="Select PEFT model (optional)", allow_custom_value=True)
local_submit_btn = gr.Button("Run", variant="primary")
with gr.Tab(MODEL_TYPE_NAMES[1]) as online_llm_tab:
online_model_selector = gr.Dropdown(PREDEF_MODEL_MAP[MODEL_TYPE_NAMES[1]], label="Select model", allow_custom_value=True)
online_api_url_textbox = gr.Textbox(label="API URL")
online_api_key_textbox = gr.Textbox(label="API Key", placeholder="We won't store your API key", value=os.getenv("ONLINE_API_KEY"), type="password")
online_submit_btn = gr.Button("Run", variant="primary")
section_model_type = gr.State(model_type_tabs.children[0].label)
with gr.Accordion("Load examples", open=False):
with open("./backend/examples.json", "r") as f:
examples = json.load(f)
gr.Button("Load example 1", size='sm').click(lambda : examples[0], outputs=[diff_codebox, message_textbox])
gr.Button("Load example 2", size='sm').click(lambda : examples[1], outputs=[diff_codebox, message_textbox])
gr.Button("Load example 3", size='sm').click(lambda : examples[2], outputs=[diff_codebox, message_textbox])
with gr.Column(scale=2) as section_result_block:
@gr.render(inputs=section_results_state, triggers=[section_results_state.change, demo.load])
def display_result(section_results):
if not section_results or len(section_results) == 0:
with gr.Tab("File tabs"):
gr.Markdown("No results")
else:
for file_name, file_results in section_results.items():
with gr.Tab(file_name) as file_tab:
highlited_results = []
full_color_map = generate_color_map()
this_color_map = {}
for item in file_results:
predict_result = {-1: 'error', 0: 'non-vul-fixing', 1: 'vul-fixing'}
text_label = f"{predict_result[item['predict']]}: {item['conf']:0.2f}"
this_color_map[text_label] = full_color_map[text_label]
highlited_results.append((
item["section"],
text_label
))
gr.HighlightedText(
highlited_results,
label="Results",
color_map=this_color_map
)
with gr.Column(scale=1) as result_block:
patch_category_label = gr.Label(value = "No results", label = "Result of the whole patch")
def update_vul_type_label(cls_results):
return gr.Label(cls_results)
vul_type_label = gr.Label(update_vul_type_label, label = "Possible fixed vulnerability type", inputs = [cls_results_state])
def update_model_type_state(evt: gr.SelectData):
return evt.value
model_type_tabs.select(update_model_type_state, outputs = [section_model_type])
def update_support_peft(base_model):
return gr.Dropdown(LOCAL_MODEL_PEFT_MAP[base_model], value = LOCAL_MODEL_PEFT_MAP[base_model][0])
local_model_selector.change(update_support_peft, inputs=[local_model_selector], outputs = [local_peft_selector])
local_submit_btn.click(fn = on_submit,
inputs = [diff_codebox, message_textbox, cwe_model_selector, section_model_type, local_model_selector, local_peft_selector],
outputs = [patch_category_label, section_results_state, cls_results_state])
online_submit_btn.click(fn = on_submit,
inputs = [diff_codebox, message_textbox, cwe_model_selector, section_model_type, online_model_selector, online_api_url_textbox, online_api_key_textbox],
outputs = [patch_category_label, section_results_state, cls_results_state])
demo.launch()
|