import inspect
import unittest

import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel

from diffusers import (
    AutoencoderKL,
    FlowMatchEulerDiscreteScheduler,
    SD3Transformer2DModel,
    StableDiffusion3PAGPipeline,
    StableDiffusion3Pipeline,
)
from diffusers.utils.testing_utils import (
    torch_device,
)

from ..test_pipelines_common import (
    PipelineTesterMixin,
    check_qkv_fusion_matches_attn_procs_length,
    check_qkv_fusion_processors_exist,
)


class StableDiffusion3PAGPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
    pipeline_class = StableDiffusion3PAGPipeline
    params = frozenset(
        [
            "prompt",
            "height",
            "width",
            "guidance_scale",
            "negative_prompt",
            "prompt_embeds",
            "negative_prompt_embeds",
        ]
    )
    batch_params = frozenset(["prompt", "negative_prompt"])
    test_xformers_attention = False

    def get_dummy_components(self):
        torch.manual_seed(0)
        transformer = SD3Transformer2DModel(
            sample_size=32,
            patch_size=1,
            in_channels=4,
            num_layers=2,
            attention_head_dim=8,
            num_attention_heads=4,
            caption_projection_dim=32,
            joint_attention_dim=32,
            pooled_projection_dim=64,
            out_channels=4,
        )
        clip_text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            hidden_act="gelu",
            projection_dim=32,
        )

        torch.manual_seed(0)
        text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config)

        torch.manual_seed(0)
        text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)

        text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        torch.manual_seed(0)
        vae = AutoencoderKL(
            sample_size=32,
            in_channels=3,
            out_channels=3,
            block_out_channels=(4,),
            layers_per_block=1,
            latent_channels=4,
            norm_num_groups=1,
            use_quant_conv=False,
            use_post_quant_conv=False,
            shift_factor=0.0609,
            scaling_factor=1.5035,
        )

        scheduler = FlowMatchEulerDiscreteScheduler()

        return {
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "text_encoder_2": text_encoder_2,
            "text_encoder_3": text_encoder_3,
            "tokenizer": tokenizer,
            "tokenizer_2": tokenizer_2,
            "tokenizer_3": tokenizer_3,
            "transformer": transformer,
            "vae": vae,
        }

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
            "output_type": "np",
            "pag_scale": 0.0,
        }
        return inputs

    def test_stable_diffusion_3_different_prompts(self):
        pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)

        inputs = self.get_dummy_inputs(torch_device)
        output_same_prompt = pipe(**inputs).images[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["prompt_2"] = "a different prompt"
        inputs["prompt_3"] = "another different prompt"
        output_different_prompts = pipe(**inputs).images[0]

        max_diff = np.abs(output_same_prompt - output_different_prompts).max()

        # Outputs should be different here
        assert max_diff > 1e-2

    def test_stable_diffusion_3_different_negative_prompts(self):
        pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)

        inputs = self.get_dummy_inputs(torch_device)
        output_same_prompt = pipe(**inputs).images[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["negative_prompt_2"] = "deformed"
        inputs["negative_prompt_3"] = "blurry"
        output_different_prompts = pipe(**inputs).images[0]

        max_diff = np.abs(output_same_prompt - output_different_prompts).max()

        # Outputs should be different here
        assert max_diff > 1e-2

    def test_stable_diffusion_3_prompt_embeds(self):
        pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
        inputs = self.get_dummy_inputs(torch_device)

        output_with_prompt = pipe(**inputs).images[0]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = inputs.pop("prompt")

        do_classifier_free_guidance = inputs["guidance_scale"] > 1
        (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        ) = pipe.encode_prompt(
            prompt,
            prompt_2=None,
            prompt_3=None,
            do_classifier_free_guidance=do_classifier_free_guidance,
            device=torch_device,
        )
        output_with_embeds = pipe(
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            **inputs,
        ).images[0]

        max_diff = np.abs(output_with_prompt - output_with_embeds).max()
        assert max_diff < 1e-4

    def test_fused_qkv_projections(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        original_image_slice = image[0, -3:, -3:, -1]

        # TODO (sayakpaul): will refactor this once `fuse_qkv_projections()` has been added
        # to the pipeline level.
        pipe.transformer.fuse_qkv_projections()
        assert check_qkv_fusion_processors_exist(
            pipe.transformer
        ), "Something wrong with the fused attention processors. Expected all the attention processors to be fused."
        assert check_qkv_fusion_matches_attn_procs_length(
            pipe.transformer, pipe.transformer.original_attn_processors
        ), "Something wrong with the attention processors concerning the fused QKV projections."

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice_fused = image[0, -3:, -3:, -1]

        pipe.transformer.unfuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice_disabled = image[0, -3:, -3:, -1]

        assert np.allclose(
            original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3
        ), "Fusion of QKV projections shouldn't affect the outputs."
        assert np.allclose(
            image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3
        ), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
        assert np.allclose(
            original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2
        ), "Original outputs should match when fused QKV projections are disabled."

    def test_pag_disable_enable(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()

        # base pipeline (expect same output when pag is disabled)
        pipe_sd = StableDiffusion3Pipeline(**components)
        pipe_sd = pipe_sd.to(device)
        pipe_sd.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        del inputs["pag_scale"]
        assert (
            "pag_scale" not in inspect.signature(pipe_sd.__call__).parameters
        ), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}."
        out = pipe_sd(**inputs).images[0, -3:, -3:, -1]

        components = self.get_dummy_components()

        # pag disabled with pag_scale=0.0
        pipe_pag = self.pipeline_class(**components)
        pipe_pag = pipe_pag.to(device)
        pipe_pag.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["pag_scale"] = 0.0
        out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1]

        assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3

    def test_pag_applied_layers(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()

        # base pipeline
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        all_self_attn_layers = [k for k in pipe.transformer.attn_processors.keys() if "attn" in k]
        original_attn_procs = pipe.transformer.attn_processors
        pag_layers = ["blocks.0", "blocks.1"]
        pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
        assert set(pipe.pag_attn_processors) == set(all_self_attn_layers)

        # blocks.0
        block_0_self_attn = ["transformer_blocks.0.attn.processor"]
        pipe.transformer.set_attn_processor(original_attn_procs.copy())
        pag_layers = ["blocks.0"]
        pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
        assert set(pipe.pag_attn_processors) == set(block_0_self_attn)

        pipe.transformer.set_attn_processor(original_attn_procs.copy())
        pag_layers = ["blocks.0.attn"]
        pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
        assert set(pipe.pag_attn_processors) == set(block_0_self_attn)

        pipe.transformer.set_attn_processor(original_attn_procs.copy())
        pag_layers = ["blocks.(0|1)"]
        pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
        assert (len(pipe.pag_attn_processors)) == 2

        pipe.transformer.set_attn_processor(original_attn_procs.copy())
        pag_layers = ["blocks.0", r"blocks\.1"]
        pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
        assert len(pipe.pag_attn_processors) == 2