tensorboy0101 commited on
Commit
2191f63
·
verified ·
1 Parent(s): b17ada5

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -0
app.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import tensorflow as tf
3
+ import numpy as np
4
+ from PIL import Image
5
+ from io import BytesIO
6
+
7
+ # Load Model
8
+ MODEL = tf.keras.models.load_model("new_cnn_model_tf.h5")
9
+ CLASS_NAMES = ["Early Blight", "Late Blight", "Healthy"]
10
+
11
+ # Function to process and predict
12
+ def predict(image):
13
+ # Convert image to numpy array
14
+ image = np.array(image)
15
+
16
+ # Expand dimensions to match model input shape
17
+ img_batch = np.expand_dims(image, 0)
18
+
19
+ # Make prediction
20
+ predictions = MODEL.predict(img_batch)
21
+
22
+ # Get class and confidence
23
+ predicted_class = CLASS_NAMES[np.argmax(predictions[0])]
24
+ confidence = float(np.max(predictions[0]))
25
+
26
+ return f"Prediction: {predicted_class} (Confidence: {confidence:.2f})"
27
+
28
+ # Create Gradio Interface
29
+ iface = gr.Interface(
30
+ fn=predict, # Function to call
31
+ inputs=gr.Image(type="pil"), # Image input (PIL format)
32
+ outputs="text", # Text output (prediction result)
33
+ title="Potato Disease Classifier",
34
+ description="Upload an image of a potato leaf, and the model will predict whether it's Healthy, Early Blight, or Late Blight."
35
+ )
36
+
37
+ # Launch the app
38
+ iface.launch()