import streamlit as st from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter import os from langchain_google_genai import GoogleGenerativeAIEmbeddings import google.generativeai as genai from langchain_community.vectorstores import FAISS from langchain_google_genai import ChatGoogleGenerativeAI from langchain.chains.question_answering import load_qa_chain from langchain.prompts import PromptTemplate from dotenv import load_dotenv from pdf2image import convert_from_bytes from PIL import Image import pytesseract import io load_dotenv() os.getenv("GOOGLE_API_KEY") genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) def get_pdf_text(pdf_docs): text = "" for uploaded_file in pdf_docs: if uploaded_file.name.endswith(".pdf"): # Process actual PDF files pdf_reader = PdfReader(uploaded_file) for page in pdf_reader.pages: page_text = page.extract_text() if page_text: text += page_text # If no text extracted, try OCR if not text.strip(): images = convert_from_bytes(uploaded_file.read()) for img in images: text += pytesseract.image_to_string(img) else: # Process image files image = Image.open(uploaded_file) text += pytesseract.image_to_string(image) return text def get_text_chunks(text): text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) chunks = text_splitter.split_text(text) return chunks def get_vector_store(text_chunks): if not text_chunks: raise ValueError("No text chunks generated from PDF. Please check the uploaded file.") embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) vector_store.save_local("faiss_index") def get_conversational_chain(): prompt_template = """ Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n Context:\n {context}?\n Question: \n{question}\n Answer: """ model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.7) prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"]) chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) return chain def user_input(user_question): embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001") new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) docs = new_db.similarity_search(user_question) chain = get_conversational_chain() response = chain( {"input_documents":docs, "question": user_question} , return_only_outputs=True) print(response) st.write("Reply: ", response["output_text"]) def main(): st.set_page_config("Chat PDF") st.header("Chat with PDF using Gemini💁") user_question = st.text_input("Ask a Question from the PDF Files") if user_question: user_input(user_question) with st.sidebar: st.title("Menu:") pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True) if st.button("Submit & Process"): with st.spinner("Processing..."): raw_text = get_pdf_text(pdf_docs) text_chunks = get_text_chunks(raw_text) get_vector_store(text_chunks) st.success("Done") if __name__ == "__main__": main()