File size: 3,866 Bytes
01ab79d
 
 
 
 
 
ac83e83
01ab79d
 
 
 
69ffbc4
 
 
 
 
01ab79d
 
 
 
 
 
 
031fa3d
69ffbc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
031fa3d
 
01ab79d
 
 
 
 
 
 
 
 
 
031fa3d
 
 
 
01ab79d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a62241
01ab79d
 
 
 
 
 
 
 
 
 
 
f4e486c
01ab79d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import os
from langchain_google_genai import GoogleGenerativeAIEmbeddings
import google.generativeai as genai
from langchain_community.vectorstores import FAISS
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
from dotenv import load_dotenv
from pdf2image import convert_from_bytes
from PIL import Image
import pytesseract
import io


load_dotenv()
os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))


def get_pdf_text(pdf_docs):
    text = ""

    for uploaded_file in pdf_docs:
        if uploaded_file.name.endswith(".pdf"):
            # Process actual PDF files
            pdf_reader = PdfReader(uploaded_file)
            for page in pdf_reader.pages:
                page_text = page.extract_text()
                if page_text:
                    text += page_text

            # If no text extracted, try OCR
            if not text.strip():
                images = convert_from_bytes(uploaded_file.read())
                for img in images:
                    text += pytesseract.image_to_string(img)

        else:
            # Process image files
            image = Image.open(uploaded_file)
            text += pytesseract.image_to_string(image)

    return text




def get_text_chunks(text):
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
    chunks = text_splitter.split_text(text)
    return chunks


def get_vector_store(text_chunks):
    if not text_chunks:
        raise ValueError("No text chunks generated from PDF. Please check the uploaded file.")

    embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
    vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
    vector_store.save_local("faiss_index")


def get_conversational_chain():

    prompt_template = """
    Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
    provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
    Context:\n {context}?\n
    Question: \n{question}\n

    Answer:
    """

    model = ChatGoogleGenerativeAI(model="gemini-pro",
                             temperature=0.7)

    prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"])
    chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)

    return chain



def user_input(user_question):
    embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
    
    new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
    docs = new_db.similarity_search(user_question)

    chain = get_conversational_chain()

    
    response = chain(
        {"input_documents":docs, "question": user_question}
        , return_only_outputs=True)

    print(response)
    st.write("Reply: ", response["output_text"])




def main():
    st.set_page_config("Chat PDF")
    st.header("Chat with PDF using Gemini💁")

    user_question = st.text_input("Ask a Question from the PDF Files")

    if user_question:
        user_input(user_question)

    with st.sidebar:
        st.title("Menu:")
        pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
        if st.button("Submit & Process"):
            with st.spinner("Processing..."):
                raw_text = get_pdf_text(pdf_docs)
                text_chunks = get_text_chunks(raw_text)
                get_vector_store(text_chunks)
                st.success("Done")



if __name__ == "__main__":
    main()