import gradio as gr from diffusers import DiffusionPipeline # get_completion = pipeline("image-to-text",model="nlpconnect/vit-gpt2-image-captioning") pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") # def summarize(input): # output = get_completion(input) # return output[0]['generated_text'] # def captioner(image): # result = get_completion(image) # return result[0]['generated_text'] def generate(prompt): return pipeline(prompt).images[0] gr.close_all() demo = gr.Interface(fn=generate, inputs=[gr.Textbox(label="Your prompt")], outputs=[gr.Image(label="Result")], title="Image Generation with Stable Diffusion", description="Generate any image with Stable Diffusion", allow_flagging="never", examples=["the spirit of a tamagotchi wandering in the city of Vienna","a mecha robot in a favela"]) demo.launch()