Cricket-Commentary / inference.py
switin06's picture
Update inference.py
eb9c410 verified
raw
history blame
11.1 kB
import torch
import math
import cv2
import json
import time
from PIL import Image
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoTokenizer,AutoModelForCausalLM
import clip
import numpy as np
from tqdm import tqdm
import os
from dotenv import load_dotenv
from IPython.display import Audio
import re
from groq import Groq
from moviepy.editor import VideoFileClip, AudioFileClip,CompositeAudioClip
from pydub import AudioSegment
import shutil
import gradio as gr
from huggingface_hub import hf_hub_download
from TTS.api import TTS
groq_key = os.environ["GROQ_API_KEY"]
class TemporalTransformerEncoder(nn.Module):
def __init__(self, embed_dim, num_heads, num_layers, num_frames, dropout=0.1):
super().__init__()
self.embed_dim = embed_dim
self.num_frames = num_frames
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
nn.init.trunc_normal_(self.cls_token, std=0.02)
self.position_embed = nn.Parameter(torch.zeros(1, num_frames + 1, embed_dim))
nn.init.trunc_normal_(self.position_embed, std=0.02)
encoder_layer = nn.TransformerEncoderLayer(
d_model=embed_dim,
nhead=num_heads,
dim_feedforward=4 * embed_dim,
dropout=dropout,
activation='gelu',
batch_first=True
)
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
def forward(self, x):
B = x.size(0)
cls_token = self.cls_token.expand(B, 1, -1)
x = torch.cat([cls_token, x], dim=1)
x = x + self.position_embed[:, :x.size(1)]
x = self.transformer(x)
return {
"cls": x[:, 0],
"tokens": x[:, 1:]
}
class CricketCommentator(nn.Module):
def __init__(self, train_mode=False, num_frames=16, train_layers=2):
super().__init__()
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.num_frames = num_frames
import clip
self.clip, self.preprocess = clip.load("ViT-B/32", device=self.device)
self.clip = self.clip.float()
if train_mode:
for param in self.clip.parameters():
param.requires_grad = False
self.temporal_encoder = TemporalTransformerEncoder(
embed_dim=512,
num_heads=8,
num_layers=3,
num_frames=num_frames,
dropout=0.1
).to(self.device).float()
# Updated projection for DeepSeek (2048-dim)
self.projection = nn.Sequential(
nn.Linear(512, 2048),
nn.GELU(),
nn.LayerNorm(2048),
nn.Dropout(0.1),
nn.Linear(2048, 2048),
nn.Tanh()
).to(self.device).float()
# DeepSeek model and tokenizer
self.tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-1.3b-instruct")
self.model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-1.3b-instruct").to(self.device).float()
self.tokenizer.pad_token = self.tokenizer.eos_token
# Freeze all parameters initially
for param in self.model.parameters():
param.requires_grad = False
# Unfreeze last N layers if training
if train_mode and train_layers > 0:
# Unfreeze last transformer blocks
for block in self.model.model.layers[-train_layers:]:
for param in block.parameters():
param.requires_grad = True
# Unfreeze final norm and head
for param in self.model.model.norm.parameters():
param.requires_grad = True
for param in self.model.lm_head.parameters():
param.requires_grad = True
def forward(self, frames):
batch_size = frames.shape[0]
frames = frames.view(-1, 3, 224, 224)
with torch.no_grad():
frame_features = self.clip.encode_image(frames.to(self.device))
frame_features = frame_features.view(batch_size, self.num_frames, -1).float()
frame_features = F.normalize(frame_features, p=2, dim=-1)
temporal_out = self.temporal_encoder(frame_features)
visual_embeds = self.projection(temporal_out["cls"])
return F.normalize(visual_embeds, p=2, dim=-1).unsqueeze(1)
def extract_frames(self, video_path):
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
stride = max(1, total_frames // self.num_frames)
frames = []
for i in range(0, total_frames, stride):
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
ret, frame = cap.read()
if ret:
h, w, _ = frame.shape
crop_size = min(h, w) // 2
y, x = (h - crop_size) // 2, (w - crop_size) // 2
cropped = cv2.cvtColor(frame[y:y+crop_size, x:x+crop_size], cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(cropped)
frames.append(self.preprocess(pil_image))
if len(frames) >= self.num_frames:
break
else:
break
cap.release()
if len(frames) < self.num_frames:
frames.extend([torch.zeros(3, 224, 224)] * (self.num_frames - len(frames)))
return torch.stack(frames)
def generate_commentary(self, video_path):
frames = self.extract_frames(video_path).unsqueeze(0).to(self.device)
visual_embeds = self.forward(frames) # Shape: [1, 1, 2560]
# Prepare text prompt
prompt = ("USER: <video> Provide a sequential description of the cricket delivery in the video. Start with the bowler's run-up, then describe the delivery, the batsman's action, and finally the outcome of the ball. Keep it concise also make sure that you won't cross 2 lines and the commentary must be in a professional tone.ASSISTANT:")
# Tokenize text prompt
inputs = self.tokenizer(prompt, return_tensors="pt",
truncation=True, max_length=512).to(self.device)
# Get token embeddings
token_embeds = self.model.model.embed_tokens(inputs['input_ids'])
# Combine visual and text embeddings
inputs_embeds = torch.cat([visual_embeds, token_embeds], dim=1)
# Create attention mask (1 for visual token + text tokens)
attention_mask = torch.cat([
torch.ones(visual_embeds.shape[:2], dtype=torch.long).to(self.device),
inputs['attention_mask']
], dim=1)
# Generate commentary
outputs = self.model.generate(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
max_new_tokens=200,
min_new_tokens=100,
do_sample=True,
temperature=0.8,
top_k=40,
top_p=0.9,
repetition_penalty=1.15,
no_repeat_ngram_size=3,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.eos_token_id
)
# Extract and clean generated text
full_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
commentary = full_text.split("ASSISTANT:")[-1].strip()
print(commentary)
return commentary
# -------------------- PIPELINE --------------------
def summarize_commentary(commentary, client, video_duration, tts_speed):
prompt = f"""
You are a professional cricket commentary editor.
Task:
- Rewrite the input commentary into a concise, broadcast-style Commetary.
- Focus only on the action and result. With very Minimal exaggeration or filler.
- DO NOT change the original event — if it’s a four, six, or wicket (out), keep it exactly the same.
- If the input says "four", your output must say "four". Same for "six" or "out".
- Ensure the sentence fits within {video_duration} seconds at {tts_speed}x speech rate.
- Use correct grammar and punctuation for smooth TTS (Text-to-Speech) delivery.
Only output the cleaned commentary. Do not add any explanations.
Input:
{commentary}
Output:
"""
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model="llama-3.1-8b-instant"
)
final = chat_completion.choices[0].message.content.strip()
print("="*50)
print(final)
print("="*50)
return final
def text_to_speech(text, output_path, speed):
raw_path = "raw_commentary.wav"
# Load multilingual multi-speaker TTS model
tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=True, gpu=False)
language="en";
# Choose a male speaker
male_speaker = "male-en-2\n"
# Generate TTS to file with speaker
tts.tts_to_file(text=text, speaker=male_speaker,language=language,file_path=raw_path)
# Speed up using ffmpeg
os.system(f"ffmpeg -y -i {raw_path} -filter:a atempo={speed} {output_path}")
os.remove(raw_path)
def mix_audio(video_path, voice_path, crowd_path, output_path):
video = VideoFileClip(video_path)
video_duration_ms = video.duration * 1000
voice = AudioSegment.from_file(voice_path)[:int(video_duration_ms - 100)]
crowd = AudioSegment.from_file(crowd_path) - 10
while len(crowd) < len(voice):
crowd += crowd
crowd = crowd[:len(voice)]
mixed = crowd.overlay(voice)
crowd_head = AudioSegment.from_file(crowd_path) - 15
while len(crowd_head) < (video_duration_ms - len(mixed)):
crowd_head += crowd_head
crowd_head = crowd_head[:int(video_duration_ms - len(mixed))]
final_audio = crowd_head + mixed
temp_audio_path = "temp_mixed_audio.mp3"
final_audio.export(temp_audio_path, format="mp3")
final_video = video.set_audio(AudioFileClip(temp_audio_path))
final_video.write_videofile(output_path, codec="libx264", audio_codec="aac")
def main(video_path):
load_dotenv()
model_weights_path = hf_hub_download(repo_id="switin06/Deepseek_Cricket_commentator",filename="best_model_1.pth")
crowd_path = "assets/Stadium_Ambience.mp3"
# Load model
model = CricketCommentator(train_mode=False)
model.load_state_dict(torch.load(model_weights_path, map_location=model.device))
model.eval()
# Generate raw commentary
raw_commentary = model.generate_commentary(video_path)
# Summarize using Groq API
client = Groq(api_key=groq_key)
video = VideoFileClip(video_path)
video_duration = video.duration # in seconds
tts_speed = 1.11 # adjust as needed
clean_commentary = summarize_commentary(raw_commentary, client, video_duration, tts_speed)
# Text to speech
tts_path = "commentary_final.mp3"
text_to_speech(clean_commentary, tts_path, tts_speed)
short_audio_path = "pro_audio3.mp3"
os.system(f"ffmpeg -y -i {tts_path} -ss 0 -t 3 {short_audio_path}")
# Final video output
output_video_path = "final_video.mp4"
mix_audio(video_path, short_audio_path, crowd_path, output_video_path)
return output_video_path