import importlib import os import os.path as osp import shutil import sys from pathlib import Path # import av import numpy as np import torch import torchvision from einops import rearrange from PIL import Image def seed_everything(seed): import random import numpy as np torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed % (2**32)) random.seed(seed) def import_filename(filename): spec = importlib.util.spec_from_file_location("mymodule", filename) module = importlib.util.module_from_spec(spec) sys.modules[spec.name] = module spec.loader.exec_module(module) return module def delete_additional_ckpt(base_path, num_keep): dirs = [] for d in os.listdir(base_path): if d.startswith("checkpoint-"): dirs.append(d) num_tot = len(dirs) if num_tot <= num_keep: return # ensure ckpt is sorted and delete the ealier! del_dirs = sorted(dirs, key=lambda x: int(x.split("-")[-1]))[: num_tot - num_keep] for d in del_dirs: path_to_dir = osp.join(base_path, d) if osp.exists(path_to_dir): shutil.rmtree(path_to_dir) def save_videos_from_pil(pil_images, path, fps=8): import av save_fmt = Path(path).suffix os.makedirs(os.path.dirname(path), exist_ok=True) width, height = pil_images[0].size if save_fmt == ".mp4": codec = "libx264" container = av.open(path, "w") stream = container.add_stream(codec, rate=fps) stream.width = width stream.height = height for pil_image in pil_images: # pil_image = Image.fromarray(image_arr).convert("RGB") av_frame = av.VideoFrame.from_image(pil_image) container.mux(stream.encode(av_frame)) container.mux(stream.encode()) container.close() elif save_fmt == ".gif": pil_images[0].save( fp=path, format="GIF", append_images=pil_images[1:], save_all=True, duration=(1 / fps * 1000), loop=0, ) else: raise ValueError("Unsupported file type. Use .mp4 or .gif.") def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8): videos = rearrange(videos, "b c t h w -> t b c h w") height, width = videos.shape[-2:] outputs = [] for x in videos: x = torchvision.utils.make_grid(x, nrow=n_rows) # (c h w) x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) # (h w c) if rescale: x = (x + 1.0) / 2.0 # -1,1 -> 0,1 x = (x * 255).numpy().astype(np.uint8) x = Image.fromarray(x) outputs.append(x) os.makedirs(os.path.dirname(path), exist_ok=True) save_videos_from_pil(outputs, path, fps) def read_frames(video_path): container = av.open(video_path) video_stream = next(s for s in container.streams if s.type == "video") frames = [] for packet in container.demux(video_stream): for frame in packet.decode(): image = Image.frombytes( "RGB", (frame.width, frame.height), frame.to_rgb().to_ndarray(), ) frames.append(image) return frames def get_fps(video_path): container = av.open(video_path) video_stream = next(s for s in container.streams if s.type == "video") fps = video_stream.average_rate container.close() return fps