Spaces:
Running
Running
Upload dataset.py
Browse filesupdated dataset.py
- src/dataset.py +281 -301
src/dataset.py
CHANGED
@@ -7,208 +7,18 @@ import random
|
|
7 |
from .vocab import Vocab
|
8 |
import pickle
|
9 |
import copy
|
10 |
-
|
11 |
|
12 |
-
class PretrainerDataset(Dataset):
|
13 |
-
"""
|
14 |
-
Class name: PretrainDataset
|
15 |
-
|
16 |
-
"""
|
17 |
-
def __init__(self, dataset_path, vocab, seq_len=30, max_mask=0.15):
|
18 |
-
self.dataset_path = dataset_path
|
19 |
-
self.vocab = vocab # Vocab object
|
20 |
-
|
21 |
-
# Related to input dataset file
|
22 |
-
self.lines = []
|
23 |
-
self.index_documents = {}
|
24 |
-
|
25 |
-
seq_len_list = []
|
26 |
-
with open(self.dataset_path, "r") as reader:
|
27 |
-
i = 0
|
28 |
-
index = 0
|
29 |
-
self.index_documents[i] = []
|
30 |
-
for line in tqdm.tqdm(reader.readlines()):
|
31 |
-
if line:
|
32 |
-
line = line.strip()
|
33 |
-
if not line:
|
34 |
-
i+=1
|
35 |
-
self.index_documents[i] = []
|
36 |
-
else:
|
37 |
-
self.index_documents[i].append(index)
|
38 |
-
self.lines.append(line.split("\t"))
|
39 |
-
len_line = len(line.split("\t"))
|
40 |
-
seq_len_list.append(len_line)
|
41 |
-
index+=1
|
42 |
-
reader.close()
|
43 |
-
print("Sequence Stats: len: %s, min: %s, max: %s, average: %s"% (len(seq_len_list),
|
44 |
-
min(seq_len_list), max(seq_len_list), sum(seq_len_list)/len(seq_len_list)))
|
45 |
-
print("Unique Sequences: ", len({tuple(ll) for ll in self.lines}))
|
46 |
-
self.index_documents = {k:v for k,v in self.index_documents.items() if v}
|
47 |
-
print(len(self.index_documents))
|
48 |
-
self.seq_len = seq_len
|
49 |
-
print("Sequence length set at: ", self.seq_len)
|
50 |
-
self.max_mask = max_mask
|
51 |
-
print("% of input tokens selected for masking : ",self.max_mask)
|
52 |
-
|
53 |
-
|
54 |
-
def __len__(self):
|
55 |
-
return len(self.lines)
|
56 |
-
|
57 |
-
def __getitem__(self, item):
|
58 |
-
token_a = self.lines[item]
|
59 |
-
# sa_masked = None
|
60 |
-
# sa_masked_label = None
|
61 |
-
# token_b = None
|
62 |
-
# is_same_student = None
|
63 |
-
# sb_masked = None
|
64 |
-
# sb_masked_label = None
|
65 |
-
|
66 |
-
# if self.select_next_seq:
|
67 |
-
# is_same_student, token_b = self.get_token_b(item)
|
68 |
-
# is_same_student = 1 if is_same_student else 0
|
69 |
-
# token_a1, token_b1 = self.truncate_to_max_seq(token_a, token_b)
|
70 |
-
# sa_masked, sa_masked_label = self.random_mask_seq(token_a1)
|
71 |
-
# sb_masked, sb_masked_label = self.random_mask_seq(token_b1)
|
72 |
-
# else:
|
73 |
-
token_a = token_a[:self.seq_len-2]
|
74 |
-
sa_masked, sa_masked_label, sa_masked_pos = self.random_mask_seq(token_a)
|
75 |
-
|
76 |
-
s1 = ([self.vocab.vocab['[CLS]']] + sa_masked + [self.vocab.vocab['[SEP]']])
|
77 |
-
s1_label = ([self.vocab.vocab['[PAD]']] + sa_masked_label + [self.vocab.vocab['[PAD]']])
|
78 |
-
segment_label = [1 for _ in range(len(s1))]
|
79 |
-
masked_pos = ([0] + sa_masked_pos + [0])
|
80 |
-
|
81 |
-
# if self.select_next_seq:
|
82 |
-
# s1 = s1 + sb_masked + [self.vocab.vocab['[SEP]']]
|
83 |
-
# s1_label = s1_label + sb_masked_label + [self.vocab.vocab['[PAD]']]
|
84 |
-
# segment_label = segment_label + [2 for _ in range(len(sb_masked)+1)]
|
85 |
-
|
86 |
-
padding = [self.vocab.vocab['[PAD]'] for _ in range(self.seq_len - len(s1))]
|
87 |
-
s1.extend(padding)
|
88 |
-
s1_label.extend(padding)
|
89 |
-
segment_label.extend(padding)
|
90 |
-
masked_pos.extend(padding)
|
91 |
-
|
92 |
-
output = {'bert_input': s1,
|
93 |
-
'bert_label': s1_label,
|
94 |
-
'segment_label': segment_label,
|
95 |
-
'masked_pos': masked_pos}
|
96 |
-
# print(f"tokenA: {token_a}")
|
97 |
-
# print(f"output: {output}")
|
98 |
-
|
99 |
-
# if self.select_next_seq:
|
100 |
-
# output['is_same_student'] = is_same_student
|
101 |
-
|
102 |
-
# print(item, len(s1), len(s1_label), len(segment_label))
|
103 |
-
# print(f"{item}.")
|
104 |
-
return {key: torch.tensor(value) for key, value in output.items()}
|
105 |
-
|
106 |
-
def random_mask_seq(self, tokens):
|
107 |
-
"""
|
108 |
-
Input: original token seq
|
109 |
-
Output: masked token seq, output label
|
110 |
-
"""
|
111 |
-
|
112 |
-
masked_pos = []
|
113 |
-
output_labels = []
|
114 |
-
output_tokens = copy.deepcopy(tokens)
|
115 |
-
opt_step = False
|
116 |
-
for i, token in enumerate(tokens):
|
117 |
-
if token in ['OptionalTask_1', 'EquationAnswer', 'NumeratorFactor', 'DenominatorFactor', 'OptionalTask_2', 'FirstRow1:1', 'FirstRow1:2', 'FirstRow2:1', 'FirstRow2:2', 'SecondRow', 'ThirdRow']:
|
118 |
-
opt_step = True
|
119 |
-
# if opt_step:
|
120 |
-
# prob = random.random()
|
121 |
-
# if prob < self.max_mask:
|
122 |
-
# output_tokens[i] = random.choice([3,7,8,9,11,12,13,14,15,16,22,23,24,25,26,27,30,31,32])
|
123 |
-
# masked_pos.append(1)
|
124 |
-
# else:
|
125 |
-
# output_tokens[i] = self.vocab.vocab.get(token, self.vocab.vocab['[UNK]'])
|
126 |
-
# masked_pos.append(0)
|
127 |
-
# output_labels.append(self.vocab.vocab.get(token, self.vocab.vocab['[UNK]']))
|
128 |
-
# opt_step = False
|
129 |
-
# else:
|
130 |
-
prob = random.random()
|
131 |
-
if prob < self.max_mask:
|
132 |
-
# chooses 15% of token positions at random
|
133 |
-
# prob /= 0.15
|
134 |
-
prob = random.random()
|
135 |
-
if prob < 0.8: #[MASK] token 80% of the time
|
136 |
-
output_tokens[i] = self.vocab.vocab['[MASK]']
|
137 |
-
masked_pos.append(1)
|
138 |
-
elif prob < 0.9: # a random token 10% of the time
|
139 |
-
# print(".......0.8-0.9......")
|
140 |
-
if opt_step:
|
141 |
-
output_tokens[i] = random.choice([7,8,9,11,12,13,14,15,16,22,23,24,25,26,27,30,31,32])
|
142 |
-
opt_step = False
|
143 |
-
else:
|
144 |
-
output_tokens[i] = random.randint(1, len(self.vocab.vocab)-1)
|
145 |
-
masked_pos.append(1)
|
146 |
-
else: # the unchanged i-th token 10% of the time
|
147 |
-
# print(".......unchanged......")
|
148 |
-
output_tokens[i] = self.vocab.vocab.get(token, self.vocab.vocab['[UNK]'])
|
149 |
-
masked_pos.append(0)
|
150 |
-
# True Label
|
151 |
-
output_labels.append(self.vocab.vocab.get(token, self.vocab.vocab['[UNK]']))
|
152 |
-
# masked_pos_label[i] = self.vocab.vocab.get(token, self.vocab.vocab['[UNK]'])
|
153 |
-
else:
|
154 |
-
# i-th token with original value
|
155 |
-
output_tokens[i] = self.vocab.vocab.get(token, self.vocab.vocab['[UNK]'])
|
156 |
-
# Padded label
|
157 |
-
output_labels.append(self.vocab.vocab['[PAD]'])
|
158 |
-
masked_pos.append(0)
|
159 |
-
# label_position = []
|
160 |
-
# label_tokens = []
|
161 |
-
# for k, v in masked_pos_label.items():
|
162 |
-
# label_position.append(k)
|
163 |
-
# label_tokens.append(v)
|
164 |
-
return output_tokens, output_labels, masked_pos
|
165 |
-
|
166 |
-
# def get_token_b(self, item):
|
167 |
-
# document_id = [k for k,v in self.index_documents.items() if item in v][0]
|
168 |
-
# random_document_id = document_id
|
169 |
-
|
170 |
-
# if random.random() < 0.5:
|
171 |
-
# document_ids = [k for k in self.index_documents.keys() if k != document_id]
|
172 |
-
# random_document_id = random.choice(document_ids)
|
173 |
-
|
174 |
-
# same_student = (random_document_id == document_id)
|
175 |
-
|
176 |
-
# nex_seq_list = self.index_documents.get(random_document_id)
|
177 |
-
|
178 |
-
# if same_student:
|
179 |
-
# if len(nex_seq_list) != 1:
|
180 |
-
# nex_seq_list = [v for v in nex_seq_list if v !=item]
|
181 |
-
|
182 |
-
# next_seq = random.choice(nex_seq_list)
|
183 |
-
# tokens = self.lines[next_seq]
|
184 |
-
# # print(f"item = {item}, tokens: {tokens}")
|
185 |
-
# # print(f"item={item}, next={next_seq}, same_student = {same_student}, {document_id} == {random_document_id}, b. {tokens}")
|
186 |
-
# return same_student, tokens
|
187 |
-
|
188 |
-
# def truncate_to_max_seq(self, s1, s2):
|
189 |
-
# sa = copy.deepcopy(s1)
|
190 |
-
# sb = copy.deepcopy(s1)
|
191 |
-
# total_allowed_seq = self.seq_len - 3
|
192 |
-
|
193 |
-
# while((len(sa)+len(sb)) > total_allowed_seq):
|
194 |
-
# if random.random() < 0.5:
|
195 |
-
# sa.pop()
|
196 |
-
# else:
|
197 |
-
# sb.pop()
|
198 |
-
# return sa, sb
|
199 |
-
|
200 |
-
|
201 |
class TokenizerDataset(Dataset):
|
202 |
"""
|
203 |
Class name: TokenizerDataset
|
204 |
Tokenize the data in the dataset
|
205 |
-
|
206 |
"""
|
207 |
def __init__(self, dataset_path, label_path, vocab, seq_len=30):
|
208 |
self.dataset_path = dataset_path
|
209 |
self.label_path = label_path
|
210 |
self.vocab = vocab # Vocab object
|
211 |
-
# self.encoder = OneHotEncoder(sparse=False)
|
212 |
|
213 |
# Related to input dataset file
|
214 |
self.lines = []
|
@@ -242,39 +52,14 @@ class TokenizerDataset(Dataset):
|
|
242 |
feat2 = [float(i) for i in line.split(",")[-2].split("\t")]
|
243 |
feat_vec.extend(feat2[1:])
|
244 |
|
245 |
-
# # highGRschool_w_prior_w_p_diffskill_wo_fa
|
246 |
-
# feat_vec = [float(i) for i in line.split(",")[-3].split("\t")]
|
247 |
-
# feat2 = [-float(i) for i in line.split(",")[-2].split("\t")]
|
248 |
-
# feat_vec.extend(feat2[1:])
|
249 |
-
|
250 |
-
# # highGRschool_w_prior_w_diffskill_0fa_skill
|
251 |
-
# feat_vec = [float(i) for i in line.split(",")[-3].split("\t")]
|
252 |
-
# feat2 = [float(i) for i in line.split(",")[-2].split("\t")]
|
253 |
-
# fa_feat_vec = [float(i) for i in line.split(",")[-1].split("\t")]
|
254 |
-
|
255 |
-
# diff_skill = [f2 if f1==0 else 0 for f2, f1 in zip(feat2, fa_feat_vec)]
|
256 |
-
# feat_vec.extend(diff_skill)
|
257 |
-
|
258 |
if j == 0:
|
259 |
print(len(feat_vec))
|
260 |
j+=1
|
261 |
-
|
262 |
-
# feat_vec.extend(feat2[1:])
|
263 |
-
# feat_vec.extend(feat2)
|
264 |
-
# feat_vec = [float(i) for i in line.split(",")[-2].split("\t")]
|
265 |
-
# feat_vec = feat_vec[1:]
|
266 |
-
# feat_vec = [float(line.split(",")[-1])]
|
267 |
-
# feat_vec = [float(i) for i in line.split(",")[-1].split("\t")]
|
268 |
-
# feat_vec = [ft-f1 for ft, f1 in zip(feat_vec, fa_feat_vec)]
|
269 |
-
|
270 |
self.feats.append(feat_vec)
|
271 |
dataset_info_file.close()
|
272 |
except Exception as e:
|
273 |
print(e)
|
274 |
-
# labeler = np.array([0, 1]) #np.unique(self.labels)
|
275 |
-
# print(f"Labeler {labeler}")
|
276 |
-
# self.encoder.fit(labeler.reshape(-1,1))
|
277 |
-
# self.labels = self.encoder.transform(np.array(self.labels).reshape(-1,1))
|
278 |
|
279 |
self.file = open(self.dataset_path, "r")
|
280 |
for line in self.file:
|
@@ -317,95 +102,197 @@ class TokenizerDataset(Dataset):
|
|
317 |
'segment_label': segment_label}
|
318 |
return {key: torch.tensor(value) for key, value in output.items()}
|
319 |
|
320 |
-
|
321 |
-
class TokenizerDatasetForCalibration(Dataset):
|
322 |
"""
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
"""
|
327 |
def __init__(self, dataset_path, label_path, vocab, seq_len=30):
|
|
|
|
|
|
|
328 |
self.dataset_path = dataset_path
|
329 |
self.label_path = label_path
|
330 |
self.vocab = vocab # Vocab object
|
331 |
-
|
332 |
-
|
333 |
# Related to input dataset file
|
334 |
self.lines = []
|
335 |
self.labels = []
|
336 |
self.feats = []
|
|
|
|
|
|
|
|
|
337 |
if self.label_path:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
self.label_file = open(self.label_path, "r")
|
339 |
-
for line in self.label_file:
|
340 |
if line:
|
341 |
line = line.strip()
|
342 |
if not line:
|
343 |
continue
|
344 |
-
|
|
|
|
|
345 |
self.label_file.close()
|
346 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
# Comment this section if you are not using feat attribute
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
|
|
352 |
if line:
|
353 |
line = line.strip()
|
354 |
if not line:
|
355 |
continue
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
|
|
373 |
if j == 0:
|
374 |
-
print(len(feat_vec))
|
375 |
j+=1
|
376 |
-
|
377 |
-
# feat_vec.extend(feat2[1:])
|
378 |
-
# feat_vec.extend(feat2)
|
379 |
-
# feat_vec = [float(i) for i in line.split(",")[-2].split("\t")]
|
380 |
-
# feat_vec = feat_vec[1:]
|
381 |
-
# feat_vec = [float(line.split(",")[-1])]
|
382 |
-
# feat_vec = [float(i) for i in line.split(",")[-1].split("\t")]
|
383 |
-
# feat_vec = [ft-f1 for ft, f1 in zip(feat_vec, fa_feat_vec)]
|
384 |
-
|
385 |
self.feats.append(feat_vec)
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
393 |
|
394 |
self.file = open(self.dataset_path, "r")
|
395 |
-
for line in self.file:
|
396 |
if line:
|
397 |
line = line.strip()
|
398 |
if line:
|
399 |
-
|
400 |
-
|
401 |
-
|
|
|
402 |
self.len = len(self.lines)
|
403 |
-
self.seq_len = seq_len
|
404 |
print("Sequence length set at ", self.seq_len, len(self.lines), len(self.labels) if self.label_path else 0)
|
405 |
-
|
406 |
def __len__(self):
|
407 |
return self.len
|
408 |
-
|
409 |
def __getitem__(self, item):
|
410 |
org_line = self.lines[item].split("\t")
|
411 |
dup_line = []
|
@@ -413,7 +300,7 @@ class TokenizerDatasetForCalibration(Dataset):
|
|
413 |
for l in org_line:
|
414 |
if l in ["OptionalTask_1", "EquationAnswer", "NumeratorFactor", "DenominatorFactor", "OptionalTask_2", "FirstRow1:1", "FirstRow1:2", "FirstRow2:1", "FirstRow2:2", "SecondRow", "ThirdRow"]:
|
415 |
opt = True
|
416 |
-
if opt and 'FinalAnswer-' in l:
|
417 |
dup_line.append('[UNK]')
|
418 |
else:
|
419 |
dup_line.append(l)
|
@@ -425,35 +312,128 @@ class TokenizerDatasetForCalibration(Dataset):
|
|
425 |
s1_feat = self.feats[item] if len(self.feats)>0 else 0
|
426 |
padding = [self.vocab.vocab['[PAD]'] for _ in range(self.seq_len - len(s1))]
|
427 |
s1.extend(padding), segment_label.extend(padding)
|
428 |
-
|
|
|
429 |
output = {'input': s1,
|
430 |
'label': s1_label,
|
431 |
'feat': s1_feat,
|
432 |
'segment_label': segment_label}
|
433 |
-
return
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
# if __name__ == "__main__":
|
438 |
-
# # import pickle
|
439 |
-
# # k = pickle.load(open("dataset/CL4999_1920/unique_steps_list.pkl","rb"))
|
440 |
-
# # print(k)
|
441 |
-
# vocab_obj = Vocab("pretraining/vocab.txt")
|
442 |
-
# vocab_obj.load_vocab()
|
443 |
-
# datasetTrain = PretrainerDataset("pretraining/pretrain.txt", vocab_obj)
|
444 |
-
|
445 |
-
# print(datasetTrain, len(datasetTrain))#, datasetTrain.documents_index)
|
446 |
-
# print(datasetTrain[len(datasetTrain)-1])
|
447 |
-
# for i, d in enumerate(datasetTrain):
|
448 |
-
# print(d.items())
|
449 |
-
# break
|
450 |
-
|
451 |
-
# fine_tune = TokenizerDataset("finetuning/finetune.txt", "finetuning/finetune_label.txt", vocab_obj)
|
452 |
-
# print(fine_tune)
|
453 |
-
# print(fine_tune[len(fine_tune)-1])
|
454 |
-
# print(fine_tune[random.randint(0, len(fine_tune))])
|
455 |
-
# for i, d in enumerate(fine_tune):
|
456 |
-
# print(d.items())
|
457 |
-
# break
|
458 |
|
459 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from .vocab import Vocab
|
8 |
import pickle
|
9 |
import copy
|
10 |
+
import os
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
class TokenizerDataset(Dataset):
|
13 |
"""
|
14 |
Class name: TokenizerDataset
|
15 |
Tokenize the data in the dataset
|
16 |
+
Feat length: 17
|
17 |
"""
|
18 |
def __init__(self, dataset_path, label_path, vocab, seq_len=30):
|
19 |
self.dataset_path = dataset_path
|
20 |
self.label_path = label_path
|
21 |
self.vocab = vocab # Vocab object
|
|
|
22 |
|
23 |
# Related to input dataset file
|
24 |
self.lines = []
|
|
|
52 |
feat2 = [float(i) for i in line.split(",")[-2].split("\t")]
|
53 |
feat_vec.extend(feat2[1:])
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
if j == 0:
|
56 |
print(len(feat_vec))
|
57 |
j+=1
|
58 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
self.feats.append(feat_vec)
|
60 |
dataset_info_file.close()
|
61 |
except Exception as e:
|
62 |
print(e)
|
|
|
|
|
|
|
|
|
63 |
|
64 |
self.file = open(self.dataset_path, "r")
|
65 |
for line in self.file:
|
|
|
102 |
'segment_label': segment_label}
|
103 |
return {key: torch.tensor(value) for key, value in output.items()}
|
104 |
|
105 |
+
class TokenizerwSkillsDataset(Dataset):
|
|
|
106 |
"""
|
107 |
+
Feature length: 17
|
108 |
+
|
|
|
109 |
"""
|
110 |
def __init__(self, dataset_path, label_path, vocab, seq_len=30):
|
111 |
+
print(f"dataset_path: {dataset_path}")
|
112 |
+
print(f"label_path: {label_path}")
|
113 |
+
|
114 |
self.dataset_path = dataset_path
|
115 |
self.label_path = label_path
|
116 |
self.vocab = vocab # Vocab object
|
117 |
+
self.seq_len = seq_len
|
118 |
+
|
119 |
# Related to input dataset file
|
120 |
self.lines = []
|
121 |
self.labels = []
|
122 |
self.feats = []
|
123 |
+
selected_lines = []
|
124 |
+
|
125 |
+
print("TokenizerwSkillsDataset...............................")
|
126 |
+
|
127 |
if self.label_path:
|
128 |
+
# Comment this section if you are not using feat attribute
|
129 |
+
dataset_info_file = open(self.label_path.replace("label", "info"), "r").readlines()
|
130 |
+
print(">>>>>>>>>>>>>>>>>", len(dataset_info_file))
|
131 |
+
j = 0
|
132 |
+
for idex, line in enumerate(dataset_info_file):
|
133 |
+
try:
|
134 |
+
if line:
|
135 |
+
line = line.strip()
|
136 |
+
if not line:
|
137 |
+
continue
|
138 |
+
|
139 |
+
feat_vec = [float(i) for i in line.split(",")[-9].split("\t")]
|
140 |
+
feat2 = [float(i) for i in line.split(",")[-8].split("\t")]
|
141 |
+
feat_vec.extend(feat2[1:])
|
142 |
+
|
143 |
+
if j == 0:
|
144 |
+
print(";;;;", len(feat_vec), feat_vec)
|
145 |
+
j+=1
|
146 |
+
self.feats.append(feat_vec)
|
147 |
+
selected_lines.append(idex)
|
148 |
+
except Exception as e:
|
149 |
+
print("................>")
|
150 |
+
print(e)
|
151 |
+
print("Error at index: ", idex)
|
152 |
+
|
153 |
self.label_file = open(self.label_path, "r")
|
154 |
+
for idex, line in enumerate(self.label_file):
|
155 |
if line:
|
156 |
line = line.strip()
|
157 |
if not line:
|
158 |
continue
|
159 |
+
if idex in selected_lines:
|
160 |
+
self.labels.append(int(line))
|
161 |
+
# self.labels.append(int(line))
|
162 |
self.label_file.close()
|
163 |
+
|
164 |
+
self.file = open(self.dataset_path, "r")
|
165 |
+
for idex, line in enumerate(self.file):
|
166 |
+
if line:
|
167 |
+
line = line.strip()
|
168 |
+
if line:
|
169 |
+
if idex in selected_lines:
|
170 |
+
self.lines.append(line)
|
171 |
+
# self.lines.append(line)
|
172 |
+
self.file.close()
|
173 |
+
self.len = len(self.lines)
|
174 |
+
print("Sequence length set at ", self.seq_len, len(self.lines), len(self.labels) if self.label_path else 0)
|
175 |
+
|
176 |
+
def __len__(self):
|
177 |
+
return self.len
|
178 |
+
|
179 |
+
def __getitem__(self, item):
|
180 |
+
org_line = self.lines[item].split("\t")
|
181 |
+
dup_line = []
|
182 |
+
opt = False
|
183 |
+
for l in org_line:
|
184 |
+
if l in ["OptionalTask_1", "EquationAnswer", "NumeratorFactor", "DenominatorFactor", "OptionalTask_2", "FirstRow1:1", "FirstRow1:2", "FirstRow2:1", "FirstRow2:2", "SecondRow", "ThirdRow"]:
|
185 |
+
opt = True
|
186 |
+
if opt and 'FinalAnswer-' in l:
|
187 |
+
dup_line.append('[UNK]')
|
188 |
+
else:
|
189 |
+
dup_line.append(l)
|
190 |
+
dup_line = "\t".join(dup_line)
|
191 |
+
# print(dup_line)
|
192 |
+
s1 = self.vocab.to_seq(dup_line, self.seq_len) # This is like tokenizer and adds [CLS] and [SEP].
|
193 |
+
s1_label = self.labels[item] if self.label_path else 0
|
194 |
+
segment_label = [1 for _ in range(len(s1))]
|
195 |
+
s1_feat = self.feats[item] if len(self.feats)>0 else 0
|
196 |
+
padding = [self.vocab.vocab['[PAD]'] for _ in range(self.seq_len - len(s1))]
|
197 |
+
s1.extend(padding), segment_label.extend(padding)
|
198 |
+
# print(s1_feat)
|
199 |
+
|
200 |
+
output = {'input': s1,
|
201 |
+
'label': s1_label,
|
202 |
+
'feat': s1_feat,
|
203 |
+
'segment_label': segment_label}
|
204 |
+
return {key: torch.tensor(value) for key, value in output.items()}
|
205 |
+
|
206 |
+
|
207 |
+
class TokenizerwTimeDataset(Dataset):
|
208 |
+
"""
|
209 |
+
Feature length: 4
|
210 |
+
|
211 |
+
"""
|
212 |
+
def __init__(self, dataset_path, label_path, vocab, seq_len=30):
|
213 |
+
print(f"dataset_path: {dataset_path}")
|
214 |
+
print(f"label_path: {label_path}")
|
215 |
+
|
216 |
+
self.dataset_path = dataset_path
|
217 |
+
self.label_path = label_path
|
218 |
+
self.vocab = vocab # Vocab object
|
219 |
+
self.seq_len = seq_len
|
220 |
+
|
221 |
+
# Related to input dataset file
|
222 |
+
self.lines = []
|
223 |
+
self.labels = []
|
224 |
+
self.feats = []
|
225 |
+
selected_lines = []
|
226 |
+
|
227 |
+
print("TokenizerwTimeDataset...............................")
|
228 |
+
time_df = pickle.load(open("ratio_proportion_change3_2223/sch_largest_100-coded/time_info/full_data_normalized_time.pkl", "rb"))
|
229 |
+
print("time: ?? ", time_df.shape)
|
230 |
+
|
231 |
+
if self.label_path:
|
232 |
# Comment this section if you are not using feat attribute
|
233 |
+
dataset_info_file = open(self.label_path.replace("label", "info"), "r").readlines()
|
234 |
+
print(">>>>>>>>>>>>>>>>>", len(dataset_info_file))
|
235 |
+
j = 0
|
236 |
+
for idex, line in enumerate(dataset_info_file):
|
237 |
+
try:
|
238 |
if line:
|
239 |
line = line.strip()
|
240 |
if not line:
|
241 |
continue
|
242 |
+
|
243 |
+
feat_vec = []
|
244 |
+
|
245 |
+
sch = line.split(",")[0]
|
246 |
+
stu = line.split(",")[2]
|
247 |
+
progress = line.split(",")[3]
|
248 |
+
prob_id = line.split(",")[4]
|
249 |
+
|
250 |
+
total_time = time_df.loc[(sch, stu, progress, prob_id)]['total_time'].item()
|
251 |
+
faopt_time = time_df.loc[(sch, stu, progress, prob_id)]['faopt_time'].item()
|
252 |
+
opt_time = time_df.loc[(sch, stu, progress, prob_id)]['opt_time'].item()
|
253 |
+
nonopt_time = time_df.loc[(sch, stu, progress, prob_id)]['nonopt_time'].item()
|
254 |
+
|
255 |
+
feat_vec.append(faopt_time)
|
256 |
+
feat_vec.append(total_time)
|
257 |
+
feat_vec.append(opt_time)
|
258 |
+
feat_vec.append(nonopt_time)
|
259 |
+
|
260 |
if j == 0:
|
261 |
+
print(";;;;", len(feat_vec), feat_vec)
|
262 |
j+=1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
self.feats.append(feat_vec)
|
264 |
+
selected_lines.append(idex)
|
265 |
+
except Exception as e:
|
266 |
+
print("................>")
|
267 |
+
print(e)
|
268 |
+
print("Error at index: ", idex)
|
269 |
+
|
270 |
+
self.label_file = open(self.label_path, "r")
|
271 |
+
for idex, line in enumerate(self.label_file):
|
272 |
+
if line:
|
273 |
+
line = line.strip()
|
274 |
+
if not line:
|
275 |
+
continue
|
276 |
+
if idex in selected_lines:
|
277 |
+
self.labels.append(int(line))
|
278 |
+
# self.labels.append(int(line))
|
279 |
+
self.label_file.close()
|
280 |
|
281 |
self.file = open(self.dataset_path, "r")
|
282 |
+
for idex, line in enumerate(self.file):
|
283 |
if line:
|
284 |
line = line.strip()
|
285 |
if line:
|
286 |
+
if idex in selected_lines:
|
287 |
+
self.lines.append(line)
|
288 |
+
# self.lines.append(line)
|
289 |
+
self.file.close()
|
290 |
self.len = len(self.lines)
|
|
|
291 |
print("Sequence length set at ", self.seq_len, len(self.lines), len(self.labels) if self.label_path else 0)
|
292 |
+
|
293 |
def __len__(self):
|
294 |
return self.len
|
295 |
+
|
296 |
def __getitem__(self, item):
|
297 |
org_line = self.lines[item].split("\t")
|
298 |
dup_line = []
|
|
|
300 |
for l in org_line:
|
301 |
if l in ["OptionalTask_1", "EquationAnswer", "NumeratorFactor", "DenominatorFactor", "OptionalTask_2", "FirstRow1:1", "FirstRow1:2", "FirstRow2:1", "FirstRow2:2", "SecondRow", "ThirdRow"]:
|
302 |
opt = True
|
303 |
+
if opt and 'FinalAnswer-' in l:
|
304 |
dup_line.append('[UNK]')
|
305 |
else:
|
306 |
dup_line.append(l)
|
|
|
312 |
s1_feat = self.feats[item] if len(self.feats)>0 else 0
|
313 |
padding = [self.vocab.vocab['[PAD]'] for _ in range(self.seq_len - len(s1))]
|
314 |
s1.extend(padding), segment_label.extend(padding)
|
315 |
+
# print(s1_feat)
|
316 |
+
|
317 |
output = {'input': s1,
|
318 |
'label': s1_label,
|
319 |
'feat': s1_feat,
|
320 |
'segment_label': segment_label}
|
321 |
+
return {key: torch.tensor(value) for key, value in output.items()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
|
323 |
+
class TokenizerwSkillsTimeDataset(Dataset):
|
324 |
+
"""
|
325 |
+
Feature length: 17+4 = 21
|
326 |
+
|
327 |
+
"""
|
328 |
+
def __init__(self, dataset_path, label_path, vocab, seq_len=30):
|
329 |
+
print(f"dataset_path: {dataset_path}")
|
330 |
+
print(f"label_path: {label_path}")
|
331 |
+
|
332 |
+
self.dataset_path = dataset_path
|
333 |
+
self.label_path = label_path
|
334 |
+
self.vocab = vocab # Vocab object
|
335 |
+
self.seq_len = seq_len
|
336 |
+
|
337 |
+
# Related to input dataset file
|
338 |
+
self.lines = []
|
339 |
+
self.labels = []
|
340 |
+
self.feats = []
|
341 |
+
selected_lines = []
|
342 |
+
|
343 |
+
print("TokenizerwSkillsTimeDataset...............................")
|
344 |
+
time_df = pickle.load(open("ratio_proportion_change3_2223/sch_largest_100-coded/time_info/full_data_normalized_time.pkl", "rb"))
|
345 |
+
print("time: ", time_df.shape)
|
346 |
+
|
347 |
+
if self.label_path:
|
348 |
+
# Comment this section if you are not using feat attribute
|
349 |
+
dataset_info_file = open(self.label_path.replace("label", "info"), "r").readlines()
|
350 |
+
print(">>>>>>>>>>>>>>>>>", len(dataset_info_file))
|
351 |
+
j = 0
|
352 |
+
for idex, line in enumerate(dataset_info_file):
|
353 |
+
try:
|
354 |
+
if line:
|
355 |
+
line = line.strip()
|
356 |
+
if not line:
|
357 |
+
continue
|
358 |
+
|
359 |
+
feat_vec = [float(i) for i in line.split(",")[-9].split("\t")]
|
360 |
+
feat2 = [float(i) for i in line.split(",")[-8].split("\t")]
|
361 |
+
feat_vec.extend(feat2[1:])
|
362 |
+
|
363 |
+
sch = line.split(",")[0]
|
364 |
+
stu = line.split(",")[2]
|
365 |
+
progress = line.split(",")[3]
|
366 |
+
prob_id = line.split(",")[4]
|
367 |
+
|
368 |
+
total_time = time_df.loc[(sch, stu, progress, prob_id)]['total_time'].item()
|
369 |
+
faopt_time = time_df.loc[(sch, stu, progress, prob_id)]['faopt_time'].item()
|
370 |
+
opt_time = time_df.loc[(sch, stu, progress, prob_id)]['opt_time'].item()
|
371 |
+
nonopt_time = time_df.loc[(sch, stu, progress, prob_id)]['nonopt_time'].item()
|
372 |
+
|
373 |
+
feat_vec.append(faopt_time)
|
374 |
+
feat_vec.append(total_time)
|
375 |
+
feat_vec.append(opt_time)
|
376 |
+
feat_vec.append(nonopt_time)
|
377 |
+
|
378 |
+
if j == 0:
|
379 |
+
print(";;;;", len(feat_vec), feat_vec)
|
380 |
+
j+=1
|
381 |
+
self.feats.append(feat_vec)
|
382 |
+
selected_lines.append(idex)
|
383 |
+
except Exception as e:
|
384 |
+
print("................>")
|
385 |
+
print(e)
|
386 |
+
print("Error at index: ", idex)
|
387 |
+
|
388 |
+
self.label_file = open(self.label_path, "r")
|
389 |
+
for idex, line in enumerate(self.label_file):
|
390 |
+
if line:
|
391 |
+
line = line.strip()
|
392 |
+
if not line:
|
393 |
+
continue
|
394 |
+
if idex in selected_lines:
|
395 |
+
self.labels.append(int(line))
|
396 |
+
# self.labels.append(int(line))
|
397 |
+
self.label_file.close()
|
398 |
+
|
399 |
+
self.file = open(self.dataset_path, "r")
|
400 |
+
for idex, line in enumerate(self.file):
|
401 |
+
if line:
|
402 |
+
line = line.strip()
|
403 |
+
if line:
|
404 |
+
if idex in selected_lines:
|
405 |
+
self.lines.append(line)
|
406 |
+
# self.lines.append(line)
|
407 |
+
self.file.close()
|
408 |
+
self.len = len(self.lines)
|
409 |
+
print("Sequence length set at ", self.seq_len, len(self.lines), len(self.labels) if self.label_path else 0)
|
410 |
+
|
411 |
+
def __len__(self):
|
412 |
+
return self.len
|
413 |
+
|
414 |
+
def __getitem__(self, item):
|
415 |
+
org_line = self.lines[item].split("\t")
|
416 |
+
dup_line = []
|
417 |
+
opt = False
|
418 |
+
for l in org_line:
|
419 |
+
if l in ["OptionalTask_1", "EquationAnswer", "NumeratorFactor", "DenominatorFactor", "OptionalTask_2", "FirstRow1:1", "FirstRow1:2", "FirstRow2:1", "FirstRow2:2", "SecondRow", "ThirdRow"]:
|
420 |
+
opt = True
|
421 |
+
if opt and 'FinalAnswer-' in l:
|
422 |
+
dup_line.append('[UNK]')
|
423 |
+
else:
|
424 |
+
dup_line.append(l)
|
425 |
+
dup_line = "\t".join(dup_line)
|
426 |
+
# print(dup_line)
|
427 |
+
s1 = self.vocab.to_seq(dup_line, self.seq_len) # This is like tokenizer and adds [CLS] and [SEP].
|
428 |
+
s1_label = self.labels[item] if self.label_path else 0
|
429 |
+
segment_label = [1 for _ in range(len(s1))]
|
430 |
+
s1_feat = self.feats[item] if len(self.feats)>0 else 0
|
431 |
+
padding = [self.vocab.vocab['[PAD]'] for _ in range(self.seq_len - len(s1))]
|
432 |
+
s1.extend(padding), segment_label.extend(padding)
|
433 |
+
# print(s1_feat)
|
434 |
+
|
435 |
+
output = {'input': s1,
|
436 |
+
'label': s1_label,
|
437 |
+
'feat': s1_feat,
|
438 |
+
'segment_label': segment_label}
|
439 |
+
return {key: torch.tensor(value) for key, value in output.items()}
|