Spaces:
Running
Running
Add 2 files
Browse files- README.md +7 -5
- index.html +1234 -19
README.md
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: static
|
7 |
pinned: false
|
|
|
|
|
8 |
---
|
9 |
|
10 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: ai-quiz-with-deepsite
|
3 |
+
emoji: 🐳
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: blue
|
6 |
sdk: static
|
7 |
pinned: false
|
8 |
+
tags:
|
9 |
+
- deepsite
|
10 |
---
|
11 |
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
index.html
CHANGED
@@ -1,19 +1,1234 @@
|
|
1 |
-
<!
|
2 |
-
<html>
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>AI-Powered Data Science Quiz</title>
|
7 |
+
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css">
|
8 |
+
<style>
|
9 |
+
@import url('https://fonts.googleapis.com/css2?family=Montserrat:wght@400;600;700&family=Roboto+Mono:wght@400;700&display=swap');
|
10 |
+
|
11 |
+
:root {
|
12 |
+
--easy-color: #4CAF50;
|
13 |
+
--medium-color: #FF9800;
|
14 |
+
--hard-color: #F44336;
|
15 |
+
--primary-bg: #f8f9fa;
|
16 |
+
--card-bg: #ffffff;
|
17 |
+
--text-color: #333333;
|
18 |
+
--hover-color: #f1f1f1;
|
19 |
+
--correct-color: #8BC34A;
|
20 |
+
--incorrect-color: #FF5252;
|
21 |
+
--loading-color: #2196F3;
|
22 |
+
--api-color: #9C27B0;
|
23 |
+
}
|
24 |
+
|
25 |
+
* {
|
26 |
+
box-sizing: border-box;
|
27 |
+
margin: 0;
|
28 |
+
padding: 0;
|
29 |
+
}
|
30 |
+
|
31 |
+
body {
|
32 |
+
font-family: 'Montserrat', sans-serif;
|
33 |
+
background-color: var(--primary-bg);
|
34 |
+
color: var(--text-color);
|
35 |
+
line-height: 1.6;
|
36 |
+
padding: 20px;
|
37 |
+
transition: background-color 0.3s;
|
38 |
+
}
|
39 |
+
|
40 |
+
.container {
|
41 |
+
max-width: 900px;
|
42 |
+
margin: 0 auto;
|
43 |
+
padding: 20px;
|
44 |
+
}
|
45 |
+
|
46 |
+
header {
|
47 |
+
text-align: center;
|
48 |
+
margin-bottom: 30px;
|
49 |
+
animation: fadeIn 0.6s ease-in-out;
|
50 |
+
}
|
51 |
+
|
52 |
+
h1 {
|
53 |
+
font-size: 2.5rem;
|
54 |
+
margin-bottom: 10px;
|
55 |
+
color: #3F51B5;
|
56 |
+
font-weight: 700;
|
57 |
+
}
|
58 |
+
|
59 |
+
.subtitle {
|
60 |
+
font-size: 1.1rem;
|
61 |
+
color: #666;
|
62 |
+
margin-bottom: 20px;
|
63 |
+
}
|
64 |
+
|
65 |
+
.difficulty-selector {
|
66 |
+
display: flex;
|
67 |
+
justify-content: center;
|
68 |
+
gap: 15px;
|
69 |
+
margin-bottom: 30px;
|
70 |
+
}
|
71 |
+
|
72 |
+
.difficulty-btn {
|
73 |
+
padding: 12px 25px;
|
74 |
+
border: none;
|
75 |
+
border-radius: 30px;
|
76 |
+
font-family: 'Montserrat', sans-serif;
|
77 |
+
font-weight: 600;
|
78 |
+
font-size: 1rem;
|
79 |
+
cursor: pointer;
|
80 |
+
transition: all 0.3s;
|
81 |
+
box-shadow: 0 3px 6px rgba(0,0,0,0.1);
|
82 |
+
position: relative;
|
83 |
+
overflow: hidden;
|
84 |
+
}
|
85 |
+
|
86 |
+
.difficulty-btn:hover {
|
87 |
+
transform: translateY(-3px);
|
88 |
+
box-shadow: 0 5px 15px rgba(0,0,0,0.1);
|
89 |
+
}
|
90 |
+
|
91 |
+
.easy {
|
92 |
+
background-color: var(--easy-color);
|
93 |
+
color: white;
|
94 |
+
}
|
95 |
+
|
96 |
+
.medium {
|
97 |
+
background-color: var(--medium-color);
|
98 |
+
color: white;
|
99 |
+
}
|
100 |
+
|
101 |
+
.hard {
|
102 |
+
background-color: var(--hard-color);
|
103 |
+
color: white;
|
104 |
+
}
|
105 |
+
|
106 |
+
.difficulty-btn.loading::after {
|
107 |
+
content: '';
|
108 |
+
position: absolute;
|
109 |
+
top: 0;
|
110 |
+
left: 0;
|
111 |
+
width: 100%;
|
112 |
+
height: 100%;
|
113 |
+
background: linear-gradient(
|
114 |
+
90deg,
|
115 |
+
transparent,
|
116 |
+
rgba(255, 255, 255, 0.4),
|
117 |
+
transparent
|
118 |
+
);
|
119 |
+
animation: loading 1.5s infinite;
|
120 |
+
}
|
121 |
+
|
122 |
+
.difficulty-btn.active {
|
123 |
+
transform: scale(1.05);
|
124 |
+
box-shadow: 0 0 0 3px rgba(0,0,0,0.2);
|
125 |
+
}
|
126 |
+
|
127 |
+
.quiz-container {
|
128 |
+
background-color: var(--card-bg);
|
129 |
+
border-radius: 15px;
|
130 |
+
box-shadow: 0 10px 30px rgba(0,0,0,0.08);
|
131 |
+
padding: 30px;
|
132 |
+
margin-bottom: 30px;
|
133 |
+
display: none;
|
134 |
+
animation: slideIn 0.5s ease-out;
|
135 |
+
}
|
136 |
+
|
137 |
+
.quiz-container.active {
|
138 |
+
display: block;
|
139 |
+
}
|
140 |
+
|
141 |
+
.question-counter {
|
142 |
+
font-family: 'Roboto Mono', monospace;
|
143 |
+
color: #666;
|
144 |
+
margin-bottom: 15px;
|
145 |
+
font-size: 0.9rem;
|
146 |
+
}
|
147 |
+
|
148 |
+
.question-text {
|
149 |
+
font-size: 1.3rem;
|
150 |
+
font-weight: 600;
|
151 |
+
margin-bottom: 25px;
|
152 |
+
color: #2c3e50;
|
153 |
+
line-height: 1.4;
|
154 |
+
min-height: 80px;
|
155 |
+
}
|
156 |
+
|
157 |
+
.options-container {
|
158 |
+
display: grid;
|
159 |
+
grid-template-columns: 1fr;
|
160 |
+
gap: 12px;
|
161 |
+
}
|
162 |
+
|
163 |
+
.option {
|
164 |
+
padding: 15px 20px;
|
165 |
+
background-color: var(--card-bg);
|
166 |
+
border: 2px solid #e0e0e0;
|
167 |
+
border-radius: 10px;
|
168 |
+
cursor: pointer;
|
169 |
+
transition: all 0.3s;
|
170 |
+
font-size: 1rem;
|
171 |
+
display: flex;
|
172 |
+
align-items: center;
|
173 |
+
min-height: 70px;
|
174 |
+
}
|
175 |
+
|
176 |
+
.option:hover {
|
177 |
+
background-color: var(--hover-color);
|
178 |
+
border-color: #bdbdbd;
|
179 |
+
}
|
180 |
+
|
181 |
+
.option.selected {
|
182 |
+
background-color: #E3F2FD;
|
183 |
+
border-color: #2196F3;
|
184 |
+
}
|
185 |
+
|
186 |
+
.option.correct {
|
187 |
+
background-color: var(--correct-color);
|
188 |
+
border-color: var(--correct-color);
|
189 |
+
color: white;
|
190 |
+
}
|
191 |
+
|
192 |
+
.option.incorrect {
|
193 |
+
background-color: var(--incorrect-color);
|
194 |
+
border-color: var(--incorrect-color);
|
195 |
+
color: white;
|
196 |
+
}
|
197 |
+
|
198 |
+
.option-letter {
|
199 |
+
font-weight: bold;
|
200 |
+
margin-right: 15px;
|
201 |
+
min-width: 20px;
|
202 |
+
font-size: 1.1rem;
|
203 |
+
}
|
204 |
+
|
205 |
+
.navigation {
|
206 |
+
display: flex;
|
207 |
+
justify-content: space-between;
|
208 |
+
margin-top: 30px;
|
209 |
+
}
|
210 |
+
|
211 |
+
.btn {
|
212 |
+
padding: 12px 25px;
|
213 |
+
border: none;
|
214 |
+
border-radius: 30px;
|
215 |
+
font-family: 'Montserrat', sans-serif;
|
216 |
+
font-weight: 600;
|
217 |
+
font-size: 1rem;
|
218 |
+
cursor: pointer;
|
219 |
+
transition: all 0.3s;
|
220 |
+
background-color: #3F51B5;
|
221 |
+
color: white;
|
222 |
+
display: flex;
|
223 |
+
align-items: center;
|
224 |
+
justify-content: center;
|
225 |
+
gap: 8px;
|
226 |
+
}
|
227 |
+
|
228 |
+
.btn:disabled {
|
229 |
+
background-color: #BDBDBD;
|
230 |
+
cursor: not-allowed;
|
231 |
+
opacity: 0.7;
|
232 |
+
}
|
233 |
+
|
234 |
+
.btn:hover:not(:disabled) {
|
235 |
+
background-color: #303F9F;
|
236 |
+
transform: translateY(-2px);
|
237 |
+
box-shadow: 0 3px 6px rgba(0,0,0,0.1);
|
238 |
+
}
|
239 |
+
|
240 |
+
.results-container {
|
241 |
+
background-color: var(--card-bg);
|
242 |
+
border-radius: 15px;
|
243 |
+
box-shadow: 0 10px 30px rgba(0,0,0,0.08);
|
244 |
+
padding: 30px;
|
245 |
+
text-align: center;
|
246 |
+
display: none;
|
247 |
+
}
|
248 |
+
|
249 |
+
.results-container.active {
|
250 |
+
display: block;
|
251 |
+
animation: fadeIn 0.6s ease-in-out;
|
252 |
+
}
|
253 |
+
|
254 |
+
.results-title {
|
255 |
+
font-size: 2rem;
|
256 |
+
margin-bottom: 20px;
|
257 |
+
color: #3F51B5;
|
258 |
+
}
|
259 |
+
|
260 |
+
.score {
|
261 |
+
font-size: 3rem;
|
262 |
+
font-weight: 700;
|
263 |
+
margin: 20px 0;
|
264 |
+
color: #4CAF50;
|
265 |
+
}
|
266 |
+
|
267 |
+
.score-text {
|
268 |
+
margin-bottom: 20px;
|
269 |
+
font-size: 1.1rem;
|
270 |
+
}
|
271 |
+
|
272 |
+
.retry-btn {
|
273 |
+
padding: 12px 25px;
|
274 |
+
background-color: #3F51B5;
|
275 |
+
color: white;
|
276 |
+
border: none;
|
277 |
+
border-radius: 30px;
|
278 |
+
font-family: 'Montserrat', sans-serif;
|
279 |
+
font-weight: 600;
|
280 |
+
font-size: 1rem;
|
281 |
+
cursor: pointer;
|
282 |
+
transition: all 0.3s;
|
283 |
+
margin-top: 20px;
|
284 |
+
}
|
285 |
+
|
286 |
+
.retry-btn:hover {
|
287 |
+
background-color: #303F9F;
|
288 |
+
transform: translateY(-2px);
|
289 |
+
box-shadow: 0 3px 6px rgba(0,0,0,0.1);
|
290 |
+
}
|
291 |
+
|
292 |
+
.progress-container {
|
293 |
+
width: 100%;
|
294 |
+
height: 8px;
|
295 |
+
background-color: #e0e0e0;
|
296 |
+
border-radius: 4px;
|
297 |
+
margin-bottom: 30px;
|
298 |
+
overflow: hidden;
|
299 |
+
}
|
300 |
+
|
301 |
+
.progress-bar {
|
302 |
+
height: 100%;
|
303 |
+
background: linear-gradient(90deg, #4CAF50, #8BC34A);
|
304 |
+
border-radius: 4px;
|
305 |
+
transition: width 0.3s ease;
|
306 |
+
}
|
307 |
+
|
308 |
+
@keyframes fadeIn {
|
309 |
+
from { opacity: 0; }
|
310 |
+
to { opacity: 1; }
|
311 |
+
}
|
312 |
+
|
313 |
+
@keyframes slideIn {
|
314 |
+
from {
|
315 |
+
opacity: 0;
|
316 |
+
transform: translateY(20px);
|
317 |
+
}
|
318 |
+
to {
|
319 |
+
opacity: 1;
|
320 |
+
transform: translateY(0);
|
321 |
+
}
|
322 |
+
}
|
323 |
+
|
324 |
+
@keyframes loading {
|
325 |
+
0% {
|
326 |
+
transform: translateX(-100%);
|
327 |
+
}
|
328 |
+
100% {
|
329 |
+
transform: translateX(100%);
|
330 |
+
}
|
331 |
+
}
|
332 |
+
|
333 |
+
.difficulty-tag {
|
334 |
+
display: inline-block;
|
335 |
+
padding: 3px 10px;
|
336 |
+
border-radius: 15px;
|
337 |
+
font-size: 0.8rem;
|
338 |
+
font-weight: 600;
|
339 |
+
margin-left: 10px;
|
340 |
+
vertical-align: middle;
|
341 |
+
}
|
342 |
+
|
343 |
+
.difficulty-tag.easy {
|
344 |
+
background-color: #E8F5E9;
|
345 |
+
color: var(--easy-color);
|
346 |
+
}
|
347 |
+
|
348 |
+
.difficulty-tag.medium {
|
349 |
+
background-color: #FFF3E0;
|
350 |
+
color: var(--medium-color);
|
351 |
+
}
|
352 |
+
|
353 |
+
.difficulty-tag.hard {
|
354 |
+
background-color: #FFEBEE;
|
355 |
+
color: var(--hard-color);
|
356 |
+
}
|
357 |
+
|
358 |
+
.explanation {
|
359 |
+
margin-top: 20px;
|
360 |
+
padding: 15px;
|
361 |
+
background-color: #E3F2FD;
|
362 |
+
border-radius: 8px;
|
363 |
+
font-size: 0.9rem;
|
364 |
+
line-height: 1.6;
|
365 |
+
display: none;
|
366 |
+
}
|
367 |
+
|
368 |
+
.explanation-title {
|
369 |
+
font-weight: 600;
|
370 |
+
margin-bottom: 8px;
|
371 |
+
color: #0D47A1;
|
372 |
+
}
|
373 |
+
|
374 |
+
footer {
|
375 |
+
text-align: center;
|
376 |
+
margin-top: 40px;
|
377 |
+
color: #666;
|
378 |
+
font-size: 0.9rem;
|
379 |
+
}
|
380 |
+
|
381 |
+
.loading-container {
|
382 |
+
display: flex;
|
383 |
+
flex-direction: column;
|
384 |
+
align-items: center;
|
385 |
+
justify-content: center;
|
386 |
+
min-height: 300px;
|
387 |
+
gap: 20px;
|
388 |
+
}
|
389 |
+
|
390 |
+
.spinner {
|
391 |
+
width: 50px;
|
392 |
+
height: 50px;
|
393 |
+
border: 5px solid rgba(0, 0, 0, 0.1);
|
394 |
+
border-radius: 50%;
|
395 |
+
border-top-color: var(--loading-color);
|
396 |
+
animation: spin 1s linear infinite;
|
397 |
+
}
|
398 |
+
|
399 |
+
.loading-text {
|
400 |
+
color: var(--loading-color);
|
401 |
+
font-weight: 600;
|
402 |
+
}
|
403 |
+
|
404 |
+
.api-count {
|
405 |
+
display: inline-block;
|
406 |
+
margin-left: 10px;
|
407 |
+
padding: 2px 8px;
|
408 |
+
background-color: var(--api-color);
|
409 |
+
color: white;
|
410 |
+
border-radius: 10px;
|
411 |
+
font-size: 0.8rem;
|
412 |
+
font-weight: 600;
|
413 |
+
}
|
414 |
+
|
415 |
+
@keyframes spin {
|
416 |
+
0% { transform: rotate(0deg); }
|
417 |
+
100% { transform: rotate(360deg); }
|
418 |
+
}
|
419 |
+
|
420 |
+
.json-format {
|
421 |
+
width: 100%;
|
422 |
+
height: 120px;
|
423 |
+
padding: 10px;
|
424 |
+
border-radius: 8px;
|
425 |
+
border: 1px solid #ddd;
|
426 |
+
font-family: 'Roboto Mono', monospace;
|
427 |
+
font-size: 0.85rem;
|
428 |
+
margin-bottom: 20px;
|
429 |
+
resize: none;
|
430 |
+
}
|
431 |
+
|
432 |
+
@media (max-width: 768px) {
|
433 |
+
.container {
|
434 |
+
padding: 15px;
|
435 |
+
}
|
436 |
+
|
437 |
+
h1 {
|
438 |
+
font-size: 2rem;
|
439 |
+
}
|
440 |
+
|
441 |
+
.difficulty-selector {
|
442 |
+
flex-direction: column;
|
443 |
+
align-items: center;
|
444 |
+
}
|
445 |
+
|
446 |
+
.difficulty-btn {
|
447 |
+
width: 100%;
|
448 |
+
}
|
449 |
+
|
450 |
+
.quiz-container, .results-container {
|
451 |
+
padding: 20px 15px;
|
452 |
+
}
|
453 |
+
|
454 |
+
.question-text {
|
455 |
+
min-height: auto;
|
456 |
+
}
|
457 |
+
}
|
458 |
+
</style>
|
459 |
+
</head>
|
460 |
+
<body>
|
461 |
+
<div class="container">
|
462 |
+
<header>
|
463 |
+
<h1>AI-Powered Data Science Quiz <span class="api-count">GPT API</span></h1>
|
464 |
+
<p class="subtitle">Dynamic questions generated by AI based on selected difficulty</p>
|
465 |
+
</header>
|
466 |
+
|
467 |
+
<div class="difficulty-selector">
|
468 |
+
<button class="difficulty-btn easy" data-difficulty="easy">
|
469 |
+
<i class="fas fa-seedling"></i> Beginner
|
470 |
+
</button>
|
471 |
+
<button class="difficulty-btn medium" data-difficulty="medium">
|
472 |
+
<i class="fas fa-brain"></i> Intermediate
|
473 |
+
</button>
|
474 |
+
<button class="difficulty-btn hard" data-difficulty="hard">
|
475 |
+
<i class="fas fa-rocket"></i> Advanced
|
476 |
+
</button>
|
477 |
+
</div>
|
478 |
+
|
479 |
+
<div class="quiz-container" id="quiz-container">
|
480 |
+
<div class="loading-container" id="loading-container">
|
481 |
+
<div class="spinner"></div>
|
482 |
+
<div class="loading-text">Generating questions with AI...</div>
|
483 |
+
</div>
|
484 |
+
|
485 |
+
<div id="quiz-content" style="display: none;">
|
486 |
+
<div class="progress-container">
|
487 |
+
<div class="progress-bar" id="progress-bar"></div>
|
488 |
+
</div>
|
489 |
+
|
490 |
+
<div class="question-counter" id="question-counter">Question 1 of 5</div>
|
491 |
+
<div class="question-text" id="question-text"></div>
|
492 |
+
|
493 |
+
<div class="options-container" id="options-container">
|
494 |
+
<!-- Options will be added dynamically -->
|
495 |
+
</div>
|
496 |
+
|
497 |
+
<div class="explanation" id="explanation">
|
498 |
+
<div class="explanation-title">Explanation:</div>
|
499 |
+
<p id="explanation-text"></p>
|
500 |
+
</div>
|
501 |
+
|
502 |
+
<div class="navigation">
|
503 |
+
<button class="btn" id="prev-btn" disabled>
|
504 |
+
<i class="fas fa-arrow-left"></i> Previous
|
505 |
+
</button>
|
506 |
+
<button class="btn" id="next-btn">
|
507 |
+
Next <i class="fas fa-arrow-right"></i>
|
508 |
+
</button>
|
509 |
+
</div>
|
510 |
+
</div>
|
511 |
+
</div>
|
512 |
+
|
513 |
+
<div class="results-container" id="results-container">
|
514 |
+
<h2 class="results-title">Quiz Completed!</h2>
|
515 |
+
<div class="score" id="score">0%</div>
|
516 |
+
<p class="score-text" id="score-text"></p>
|
517 |
+
<button class="retry-btn" id="retry-btn">
|
518 |
+
<i class="fas fa-redo"></i> Try Another Difficulty
|
519 |
+
</button>
|
520 |
+
</div>
|
521 |
+
|
522 |
+
<footer>
|
523 |
+
<p>AI-Powered Data Science Quiz © 2023 | Questions generated with OpenAI API</p>
|
524 |
+
</footer>
|
525 |
+
</div>
|
526 |
+
|
527 |
+
<script>
|
528 |
+
// DOM elements
|
529 |
+
const difficultyBtns = document.querySelectorAll('.difficulty-btn');
|
530 |
+
const quizContainer = document.getElementById('quiz-container');
|
531 |
+
const quizContent = document.getElementById('quiz-content');
|
532 |
+
const loadingContainer = document.getElementById('loading-container');
|
533 |
+
const resultsContainer = document.getElementById('results-container');
|
534 |
+
const questionCounter = document.getElementById('question-counter');
|
535 |
+
const questionText = document.getElementById('question-text');
|
536 |
+
const optionsContainer = document.getElementById('options-container');
|
537 |
+
const prevBtn = document.getElementById('prev-btn');
|
538 |
+
const nextBtn = document.getElementById('next-btn');
|
539 |
+
const retryBtn = document.getElementById('retry-btn');
|
540 |
+
const scoreElement = document.getElementById('score');
|
541 |
+
const scoreText = document.getElementById('score-text');
|
542 |
+
const progressBar = document.getElementById('progress-bar');
|
543 |
+
const explanation = document.getElementById('explanation');
|
544 |
+
const explanationText = document.getElementById('explanation-text');
|
545 |
+
|
546 |
+
// Quiz state variables
|
547 |
+
let currentDifficulty = null;
|
548 |
+
let quizQuestions = [];
|
549 |
+
let currentQuestionIndex = 0;
|
550 |
+
let score = 0;
|
551 |
+
let userAnswers = [];
|
552 |
+
let apiKey = ''; // You should set this or get it from user input
|
553 |
+
|
554 |
+
// Event listeners for difficulty selection
|
555 |
+
difficultyBtns.forEach(btn => {
|
556 |
+
btn.addEventListener('click', () => {
|
557 |
+
const difficulty = btn.dataset.difficulty;
|
558 |
+
|
559 |
+
// Set loading state
|
560 |
+
difficultyBtns.forEach(b => {
|
561 |
+
b.disabled = true;
|
562 |
+
if (b !== btn) b.classList.add('disabled');
|
563 |
+
});
|
564 |
+
btn.classList.add('loading');
|
565 |
+
|
566 |
+
// Start quiz with selected difficulty
|
567 |
+
generateQuestions(difficulty)
|
568 |
+
.then(() => {
|
569 |
+
startQuiz(difficulty);
|
570 |
+
|
571 |
+
// Reset button states
|
572 |
+
difficultyBtns.forEach(b => {
|
573 |
+
b.disabled = false;
|
574 |
+
if (b !== btn) b.classList.remove('disabled');
|
575 |
+
});
|
576 |
+
btn.classList.remove('loading');
|
577 |
+
|
578 |
+
// Update active button style
|
579 |
+
difficultyBtns.forEach(b => b.classList.remove('active'));
|
580 |
+
btn.classList.add('active');
|
581 |
+
})
|
582 |
+
.catch(error => {
|
583 |
+
console.error('Error generating questions:', error);
|
584 |
+
alert('Failed to generate questions. Please try again.');
|
585 |
+
|
586 |
+
// Reset button states
|
587 |
+
difficultyBtns.forEach(b => {
|
588 |
+
b.disabled = false;
|
589 |
+
b.classList.remove('disabled', 'loading');
|
590 |
+
});
|
591 |
+
});
|
592 |
+
});
|
593 |
+
});
|
594 |
+
|
595 |
+
// Event listeners for navigation buttons
|
596 |
+
prevBtn.addEventListener('click', showPreviousQuestion);
|
597 |
+
nextBtn.addEventListener('click', showNextQuestion);
|
598 |
+
retryBtn.addEventListener('click', resetQuiz);
|
599 |
+
|
600 |
+
// Generate questions using OpenAI API
|
601 |
+
async function generateQuestions(difficulty) {
|
602 |
+
// Show loading state
|
603 |
+
quizContainer.classList.add('active');
|
604 |
+
loadingContainer.style.display = 'flex';
|
605 |
+
quizContent.style.display = 'none';
|
606 |
+
|
607 |
+
// Define prompt based on difficulty
|
608 |
+
let prompt;
|
609 |
+
switch(difficulty) {
|
610 |
+
case 'easy':
|
611 |
+
prompt = `Generate 5 basic data science multiple-choice questions (MCQs) for beginners.
|
612 |
+
Each question should have 4 options with clear correct answers.
|
613 |
+
Include explanations for each answer. Return as a JSON array with this structure:
|
614 |
+
[{
|
615 |
+
"question": "question text",
|
616 |
+
"options": ["option1", "option2", "option3", "option4"],
|
617 |
+
"correct": 0, // index of correct option
|
618 |
+
"explanation": "detailed explanation"
|
619 |
+
}]`;
|
620 |
+
break;
|
621 |
+
case 'medium':
|
622 |
+
prompt = `Generate 5 intermediate data science multiple-choice questions (MCQs) covering topics
|
623 |
+
like data cleaning, visualization, basic statistics, and machine learning concepts.
|
624 |
+
Each question should have 4 challenging options with one clearly correct answer.
|
625 |
+
Include detailed explanations. Return as a JSON array with this structure:
|
626 |
+
[{
|
627 |
+
"question": "question text",
|
628 |
+
"options": ["option1", "option2", "option3", "option4"],
|
629 |
+
"correct": 0, // index of correct option
|
630 |
+
"explanation": "detailed explanation"
|
631 |
+
}]`;
|
632 |
+
break;
|
633 |
+
case 'hard':
|
634 |
+
prompt = `Generate 5 advanced data science multiple-choice questions (MCQs) covering
|
635 |
+
complex topics like deep learning, optimization, advanced statistics,
|
636 |
+
and real-world implementation challenges. Each question should have 4
|
637 |
+
subtle options with one correct answer that tests nuanced understanding.
|
638 |
+
Include in-depth explanations. Return as a JSON array with this structure:
|
639 |
+
[{
|
640 |
+
"question": "question text",
|
641 |
+
"options": ["option1", "option2", "option3", "option4"],
|
642 |
+
"correct": 0, // index of correct option
|
643 |
+
"explanation": "detailed explanation"
|
644 |
+
}]`;
|
645 |
+
break;
|
646 |
+
}
|
647 |
+
|
648 |
+
try {
|
649 |
+
// In a production environment, you would call your backend API here
|
650 |
+
// which would then call OpenAI's API with proper authentication
|
651 |
+
|
652 |
+
// For demonstration purposes, we'll simulate an API call with a delay
|
653 |
+
await new Promise(resolve => setTimeout(resolve, 2000));
|
654 |
+
|
655 |
+
// Simulated response - in a real app, this would come from the API
|
656 |
+
let simulatedResponse;
|
657 |
+
switch(difficulty) {
|
658 |
+
case 'easy':
|
659 |
+
simulatedResponse = [
|
660 |
+
{
|
661 |
+
"question": "Which Python library is primarily used for data manipulation and analysis?",
|
662 |
+
"options": [
|
663 |
+
"Matplotlib",
|
664 |
+
"Pandas",
|
665 |
+
"Scikit-learn",
|
666 |
+
"TensorFlow"
|
667 |
+
],
|
668 |
+
"correct": 1,
|
669 |
+
"explanation": "Pandas is the primary Python library for data manipulation and analysis. It provides data structures like DataFrames that make working with structured data easy."
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"question": "What does CSV stand for in data science?",
|
673 |
+
"options": [
|
674 |
+
"Character Separated Values",
|
675 |
+
"Comma Separated Values",
|
676 |
+
"Columnar Structured Variables",
|
677 |
+
"Computer System Verification"
|
678 |
+
],
|
679 |
+
"correct": 1,
|
680 |
+
"explanation": "CSV stands for Comma Separated Values, which is a simple file format used to store tabular data. Each line represents a row, with values separated by commas."
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"question": "Which of these is NOT a supervised learning algorithm?",
|
684 |
+
"options": [
|
685 |
+
"Linear Regression",
|
686 |
+
"Decision Trees",
|
687 |
+
"K-Means Clustering",
|
688 |
+
"Random Forest"
|
689 |
+
],
|
690 |
+
"correct": 2,
|
691 |
+
"explanation": "K-Means Clustering is an unsupervised learning algorithm that groups similar data points together. Unlike supervised learning, it doesn't require labeled training data."
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"question": "What's the purpose of the .head() method in Pandas?",
|
695 |
+
"options": [
|
696 |
+
"Display the first few rows of a DataFrame",
|
697 |
+
"Calculate the average of each column",
|
698 |
+
"Remove missing values from the DataFrame",
|
699 |
+
"Round numbers to the nearest integer"
|
700 |
+
],
|
701 |
+
"correct": 0,
|
702 |
+
"explanation": "The .head() method is used to quickly inspect the first few rows (default is 5) of a DataFrame. This is useful for getting a sense of your data's structure and content."
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"question": "Which tool would you use to create a 2D plot of your data?",
|
706 |
+
"options": [
|
707 |
+
"NumPy",
|
708 |
+
"Matplotlib",
|
709 |
+
"Pandas",
|
710 |
+
"SciPy"
|
711 |
+
],
|
712 |
+
"correct": 1,
|
713 |
+
"explanation": "Matplotlib is Python's primary 2D plotting library. It provides a MATLAB-like interface for creating various types of charts, graphs, and visualizations."
|
714 |
+
}
|
715 |
+
];
|
716 |
+
break;
|
717 |
+
case 'medium':
|
718 |
+
simulatedResponse = [
|
719 |
+
{
|
720 |
+
"question": "What is the primary purpose of one-hot encoding?",
|
721 |
+
"options": [
|
722 |
+
"To normalize numerical features",
|
723 |
+
"To convert categorical variables into binary vectors",
|
724 |
+
"To reduce dimensionality of numerical data",
|
725 |
+
"To handle missing values in a dataset"
|
726 |
+
],
|
727 |
+
"correct": 1,
|
728 |
+
"explanation": "One-hot encoding converts categorical variables into a binary matrix representation where each category becomes a binary feature. This is necessary because most machine learning algorithms work with numerical data."
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"question": "Which evaluation metric would be most appropriate for an imbalanced classification problem?",
|
732 |
+
"options": [
|
733 |
+
"Accuracy",
|
734 |
+
"Mean Squared Error",
|
735 |
+
"F1 Score",
|
736 |
+
"R-squared"
|
737 |
+
],
|
738 |
+
"correct": 2,
|
739 |
+
"explanation": "The F1 score is the harmonic mean of precision and recall, making it a better metric than accuracy for imbalanced datasets where one class significantly outnumbers the others."
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"question": "In feature selection, what does the Pearson correlation coefficient measure between two variables?",
|
743 |
+
"options": [
|
744 |
+
"Causal relationship",
|
745 |
+
"Proportion of variance explained",
|
746 |
+
"Linear relationship",
|
747 |
+
"Statistical significance"
|
748 |
+
],
|
749 |
+
"correct": 2,
|
750 |
+
"explanation": "Pearson correlation measures the linear relationship between two continuous variables, ranging from -1 (perfect negative correlation) to +1 (perfect positive correlation)."
|
751 |
+
},
|
752 |
+
{
|
753 |
+
"question": "What does the term 'overfitting' refer to in machine learning?",
|
754 |
+
"options": [
|
755 |
+
"Model learns the training data too well including noise",
|
756 |
+
"Model fails to capture patterns in the training data",
|
757 |
+
"Model takes too long to train",
|
758 |
+
"Model performs differently on different hardware"
|
759 |
+
],
|
760 |
+
"correct": 0,
|
761 |
+
"explanation": "Overfitting occurs when a model learns the detail and noise in the training data to the extent that it negatively impacts the performance of the model on new data."
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"question": "Which technique would you use to identify clusters in unlabeled data?",
|
765 |
+
"options": [
|
766 |
+
"Linear Regression",
|
767 |
+
"Principal Component Analysis",
|
768 |
+
"K-Means Clustering",
|
769 |
+
"Logistic Regression"
|
770 |
+
],
|
771 |
+
"correct": 2,
|
772 |
+
"explanation": "K-Means is an unsupervised learning algorithm that groups similar data points into clusters. It works well for identifying natural groupings in unlabeled data."
|
773 |
+
}
|
774 |
+
];
|
775 |
+
break;
|
776 |
+
case 'hard':
|
777 |
+
simulatedResponse = [
|
778 |
+
{
|
779 |
+
"question": "What is the primary purpose of a dropout layer in a neural network?",
|
780 |
+
"options": [
|
781 |
+
"To accelerate forward propagation",
|
782 |
+
"To regularize the model by randomly deactivating neurons",
|
783 |
+
"To reduce the dimensionality of the input",
|
784 |
+
"To convert the output to probabilities"
|
785 |
+
],
|
786 |
+
"correct": 1,
|
787 |
+
"explanation": "Dropout is a regularization technique where randomly selected neurons are ignored during training. This prevents overfitting by making the network less sensitive to any single neuron's output."
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"question": "In the attention mechanism of transformers, what does the query-key-value computation achieve?",
|
791 |
+
"options": [
|
792 |
+
"It determines the degree of focus on different parts of the input",
|
793 |
+
"It compresses the model parameters to fit memory constraints",
|
794 |
+
"It converts discrete tokens to continuous embeddings",
|
795 |
+
"It normalizes the gradients during backpropagation"
|
796 |
+
],
|
797 |
+
"correct": 0,
|
798 |
+
"explanation": "The query-key-value computation in attention mechanisms determines how much focus to place on different parts of the input sequence by computing attention scores as the dot product of queries and keys."
|
799 |
+
},
|
800 |
+
{
|
801 |
+
"question": "What is the main advantage of using a ROC curve for binary classification evaluation?",
|
802 |
+
"options": [
|
803 |
+
"It's threshold-independent",
|
804 |
+
"It shows performance at perfect precision",
|
805 |
+
"It works better than PR curves for balanced datasets",
|
806 |
+
"It directly optimizes for model accuracy"
|
807 |
+
],
|
808 |
+
"correct": 0,
|
809 |
+
"explanation": "The ROC curve plots true positive rate vs false positive rate at various classification thresholds, providing a comprehensive view of model performance across all possible thresholds."
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"question": "In Bayesian optimization, what is the role of the acquisition function?",
|
813 |
+
"options": [
|
814 |
+
"To model the objective function's probability distribution",
|
815 |
+
"To determine the next set of hyperparameters to evaluate",
|
816 |
+
"To regularize the complexity of the surrogate model",
|
817 |
+
"To handle categorical variables in the search space"
|
818 |
+
],
|
819 |
+
"correct": 1,
|
820 |
+
"explanation": "The acquisition function balances exploration and exploitation to suggest the most promising hyperparameters to evaluate next, based on the surrogate model's predictions."
|
821 |
+
},
|
822 |
+
{
|
823 |
+
"question": "What differentiates a variational autoencoder (VAE) from a standard autoencoder?",
|
824 |
+
"options": [
|
825 |
+
"VAEs use convolutional layers exclusively",
|
826 |
+
"VAEs learn a latent probability distribution rather than discrete encodings",
|
827 |
+
"VAEs require labeled data for training",
|
828 |
+
"VAEs are restricted to binary classification tasks"
|
829 |
+
],
|
830 |
+
"correct": 1,
|
831 |
+
"explanation": "VAEs learn the parameters of a probability distribution representing the data in latent space, enabling generative capabilities through sampling, unlike standard autoencoders which learn deterministic encodings."
|
832 |
+
}
|
833 |
+
];
|
834 |
+
break;
|
835 |
+
}
|
836 |
+
|
837 |
+
return simulatedResponse;
|
838 |
+
|
839 |
+
} catch (error) {
|
840 |
+
console.error('Error generating questions:', error);
|
841 |
+
throw error;
|
842 |
+
}
|
843 |
+
}
|
844 |
+
|
845 |
+
// Initialize quiz with generated questions
|
846 |
+
function startQuiz(difficulty) {
|
847 |
+
currentDifficulty = difficulty;
|
848 |
+
quizQuestions = window.quizData[difficulty]; // In a real app, use the generated questions
|
849 |
+
currentQuestionIndex = 0;
|
850 |
+
score = 0;
|
851 |
+
userAnswers = Array(quizQuestions.length).fill(null);
|
852 |
+
|
853 |
+
// Show quiz content
|
854 |
+
loadingContainer.style.display = 'none';
|
855 |
+
quizContent.style.display = 'block';
|
856 |
+
|
857 |
+
// Reset UI
|
858 |
+
quizContainer.classList.add('active');
|
859 |
+
resultsContainer.classList.remove('active');
|
860 |
+
|
861 |
+
showQuestion();
|
862 |
+
updateProgressBar();
|
863 |
+
}
|
864 |
+
|
865 |
+
// Display current question
|
866 |
+
function showQuestion() {
|
867 |
+
const question = quizQuestions[currentQuestionIndex];
|
868 |
+
|
869 |
+
// Update question counter
|
870 |
+
questionCounter.textContent = `Question ${currentQuestionIndex + 1} of ${quizQuestions.length}`;
|
871 |
+
|
872 |
+
// Update question text
|
873 |
+
questionText.textContent = question.question;
|
874 |
+
|
875 |
+
// Clear previous options
|
876 |
+
optionsContainer.innerHTML = '';
|
877 |
+
|
878 |
+
// Add new options with letters (A, B, C, D)
|
879 |
+
const optionLetters = ['A', 'B', 'C', 'D'];
|
880 |
+
question.options.forEach((option, index) => {
|
881 |
+
const optionElement = document.createElement('div');
|
882 |
+
optionElement.className = 'option';
|
883 |
+
|
884 |
+
// Add letter indicator
|
885 |
+
const letterSpan = document.createElement('span');
|
886 |
+
letterSpan.className = 'option-letter';
|
887 |
+
letterSpan.textContent = optionLetters[index];
|
888 |
+
optionElement.appendChild(letterSpan);
|
889 |
+
|
890 |
+
// Add option text
|
891 |
+
const textSpan = document.createElement('span');
|
892 |
+
textSpan.textContent = option;
|
893 |
+
optionElement.appendChild(textSpan);
|
894 |
+
|
895 |
+
// Add click event
|
896 |
+
optionElement.addEventListener('click', () => selectOption(index));
|
897 |
+
|
898 |
+
// Highlight if previously selected
|
899 |
+
if (userAnswers[currentQuestionIndex] === index) {
|
900 |
+
optionElement.classList.add('selected');
|
901 |
+
|
902 |
+
// Show correct/incorrect if reviewing
|
903 |
+
if (userAnswers[currentQuestionIndex] !== null) {
|
904 |
+
if (index === question.correct) {
|
905 |
+
optionElement.classList.add('correct');
|
906 |
+
} else {
|
907 |
+
optionElement.classList.add('incorrect');
|
908 |
+
}
|
909 |
+
|
910 |
+
// Highlight correct answer if wrong
|
911 |
+
if (userAnswers[currentQuestionIndex] !== question.correct) {
|
912 |
+
const correctOption = optionsContainer.children[question.correct];
|
913 |
+
correctOption.classList.add('correct');
|
914 |
+
}
|
915 |
+
|
916 |
+
// Show explanation
|
917 |
+
explanation.style.display = 'block';
|
918 |
+
explanationText.textContent = question.explanation;
|
919 |
+
}
|
920 |
+
}
|
921 |
+
|
922 |
+
optionsContainer.appendChild(optionElement);
|
923 |
+
});
|
924 |
+
|
925 |
+
// Hide explanation initially for new questions
|
926 |
+
if (userAnswers[currentQuestionIndex] === null) {
|
927 |
+
explanation.style.display = 'none';
|
928 |
+
}
|
929 |
+
|
930 |
+
// Update navigation buttons
|
931 |
+
prevBtn.disabled = currentQuestionIndex === 0;
|
932 |
+
nextBtn.textContent = currentQuestionIndex === quizQuestions.length - 1 ?
|
933 |
+
'Submit' : 'Next';
|
934 |
+
}
|
935 |
+
|
936 |
+
// Handle option selection
|
937 |
+
function selectOption(optionIndex) {
|
938 |
+
// If already answered (review mode), don't allow changes
|
939 |
+
if (userAnswers[currentQuestionIndex] !== null) return;
|
940 |
+
|
941 |
+
const question = quizQuestions[currentQuestionIndex];
|
942 |
+
|
943 |
+
// Clear previous selection
|
944 |
+
const options = document.querySelectorAll('.option');
|
945 |
+
options.forEach(opt => opt.classList.remove('selected'));
|
946 |
+
|
947 |
+
// Highlight selected option
|
948 |
+
options[optionIndex].classList.add('selected');
|
949 |
+
|
950 |
+
// Store user answer
|
951 |
+
userAnswers[currentQuestionIndex] = optionIndex;
|
952 |
+
|
953 |
+
// Show explanation
|
954 |
+
explanation.style.display = 'block';
|
955 |
+
explanationText.textContent = question.explanation;
|
956 |
+
|
957 |
+
// Update score if correct
|
958 |
+
if (optionIndex === question.correct) {
|
959 |
+
score++;
|
960 |
+
}
|
961 |
+
|
962 |
+
// Highlight correct/incorrect if reviewing
|
963 |
+
if (userAnswers[currentQuestionIndex] !== null) {
|
964 |
+
if (optionIndex === question.correct) {
|
965 |
+
options[optionIndex].classList.add('correct');
|
966 |
+
} else {
|
967 |
+
options[optionIndex].classList.add('incorrect');
|
968 |
+
|
969 |
+
// Highlight correct answer
|
970 |
+
const correctOption = options[question.correct];
|
971 |
+
correctOption.classList.add('correct');
|
972 |
+
}
|
973 |
+
}
|
974 |
+
|
975 |
+
// Update progress bar
|
976 |
+
updateProgressBar();
|
977 |
+
|
978 |
+
// Automatically proceed after short delay if not last question
|
979 |
+
if (currentQuestionIndex < quizQuestions.length - 1) {
|
980 |
+
setTimeout(() => {
|
981 |
+
currentQuestionIndex++;
|
982 |
+
showQuestion();
|
983 |
+
}, 1500);
|
984 |
+
}
|
985 |
+
}
|
986 |
+
|
987 |
+
// Show next question
|
988 |
+
function showNextQuestion() {
|
989 |
+
// If on last question and answered, show results
|
990 |
+
if (currentQuestionIndex === quizQuestions.length - 1 &&
|
991 |
+
userAnswers[currentQuestionIndex] !== null) {
|
992 |
+
showResults();
|
993 |
+
return;
|
994 |
+
}
|
995 |
+
|
996 |
+
// Require answer before proceeding unless on review
|
997 |
+
if (userAnswers[currentQuestionIndex] === null) {
|
998 |
+
alert('Please select an answer before proceeding.');
|
999 |
+
return;
|
1000 |
+
}
|
1001 |
+
|
1002 |
+
if (currentQuestionIndex < quizQuestions.length - 1) {
|
1003 |
+
currentQuestionIndex++;
|
1004 |
+
showQuestion();
|
1005 |
+
} else {
|
1006 |
+
showResults();
|
1007 |
+
}
|
1008 |
+
}
|
1009 |
+
|
1010 |
+
// Show previous question
|
1011 |
+
function showPreviousQuestion() {
|
1012 |
+
if (currentQuestionIndex > 0) {
|
1013 |
+
currentQuestionIndex--;
|
1014 |
+
showQuestion();
|
1015 |
+
}
|
1016 |
+
}
|
1017 |
+
|
1018 |
+
// Display final results
|
1019 |
+
function showResults() {
|
1020 |
+
quizContainer.classList.remove('active');
|
1021 |
+
resultsContainer.classList.add('active');
|
1022 |
+
|
1023 |
+
const percentage = Math.round((score / quizQuestions.length) * 100);
|
1024 |
+
scoreElement.textContent = `${percentage}%`;
|
1025 |
+
|
1026 |
+
// Dynamic score message
|
1027 |
+
let message;
|
1028 |
+
if (percentage >= 90) {
|
1029 |
+
message = `Outstanding! You really know your ${currentDifficulty === 'easy' ? 'basics' : currentDifficulty === 'medium' ? 'intermediate concepts' : 'advanced topics'}!`;
|
1030 |
+
} else if (percentage >= 70) {
|
1031 |
+
message = `Good job! You have solid ${currentDifficulty === 'easy' ? 'basic' : currentDifficulty === 'medium' ? 'intermediate' : 'advanced'} knowledge.`;
|
1032 |
+
} else if (percentage >= 50) {
|
1033 |
+
message = `Not bad! You've got some ${currentDifficulty === 'easy' ? 'basic' : currentDifficulty === 'medium' ? 'intermediate' : 'advanced'} understanding.`;
|
1034 |
+
} else {
|
1035 |
+
message = `Keep practicing! You'll improve your ${currentDifficulty === 'easy' ? 'basic' : currentDifficulty === 'medium' ? 'intermediate' : 'advanced'} skills with time.`;
|
1036 |
+
}
|
1037 |
+
|
1038 |
+
scoreText.textContent = `${message} You answered ${score} out of ${quizQuestions.length} questions correctly.`;
|
1039 |
+
}
|
1040 |
+
|
1041 |
+
// Reset quiz to initial state
|
1042 |
+
function resetQuiz() {
|
1043 |
+
resultsContainer.classList.remove('active');
|
1044 |
+
quizContainer.classList.remove('active');
|
1045 |
+
difficultyBtns.forEach(btn => {
|
1046 |
+
btn.classList.remove('active');
|
1047 |
+
btn.disabled = false;
|
1048 |
+
});
|
1049 |
+
}
|
1050 |
+
|
1051 |
+
// Update progress bar
|
1052 |
+
function updateProgressBar() {
|
1053 |
+
const answeredCount = userAnswers.filter(answer => answer !== null).length;
|
1054 |
+
const progress = (answeredCount / quizQuestions.length) * 100;
|
1055 |
+
progressBar.style.width = `${progress}%`;
|
1056 |
+
}
|
1057 |
+
|
1058 |
+
// Store the simulated response as quiz data
|
1059 |
+
window.quizData = {
|
1060 |
+
easy: [
|
1061 |
+
{
|
1062 |
+
"question": "Which Python library is primarily used for data manipulation and analysis?",
|
1063 |
+
"options": [
|
1064 |
+
"Matplotlib",
|
1065 |
+
"Pandas",
|
1066 |
+
"Scikit-learn",
|
1067 |
+
"TensorFlow"
|
1068 |
+
],
|
1069 |
+
"correct": 1,
|
1070 |
+
"explanation": "Pandas is the primary Python library for data manipulation and analysis. It provides data structures like DataFrames that make working with structured data easy."
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"question": "What does CSV stand for in data science?",
|
1074 |
+
"options": [
|
1075 |
+
"Character Separated Values",
|
1076 |
+
"Comma Separated Values",
|
1077 |
+
"Columnar Structured Variables",
|
1078 |
+
"Computer System Verification"
|
1079 |
+
],
|
1080 |
+
"correct": 1,
|
1081 |
+
"explanation": "CSV stands for Comma Separated Values, which is a simple file format used to store tabular data. Each line represents a row, with values separated by commas."
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"question": "Which of these is NOT a supervised learning algorithm?",
|
1085 |
+
"options": [
|
1086 |
+
"Linear Regression",
|
1087 |
+
"Decision Trees",
|
1088 |
+
"K-Means Clustering",
|
1089 |
+
"Random Forest"
|
1090 |
+
],
|
1091 |
+
"correct": 2,
|
1092 |
+
"explanation": "K-Means Clustering is an unsupervised learning algorithm that groups similar data points together. Unlike supervised learning, it doesn't require labeled training data."
|
1093 |
+
},
|
1094 |
+
{
|
1095 |
+
"question": "What's the purpose of the .head() method in Pandas?",
|
1096 |
+
"options": [
|
1097 |
+
"Display the first few rows of a DataFrame",
|
1098 |
+
"Calculate the average of each column",
|
1099 |
+
"Remove missing values from the DataFrame",
|
1100 |
+
"Round numbers to the nearest integer"
|
1101 |
+
],
|
1102 |
+
"correct": 0,
|
1103 |
+
"explanation": "The .head() method is used to quickly inspect the first few rows (default is 5) of a DataFrame. This is useful for getting a sense of your data's structure and content."
|
1104 |
+
},
|
1105 |
+
{
|
1106 |
+
"question": "Which tool would you use to create a 2D plot of your data?",
|
1107 |
+
"options": [
|
1108 |
+
"NumPy",
|
1109 |
+
"Matplotlib",
|
1110 |
+
"Pandas",
|
1111 |
+
"SciPy"
|
1112 |
+
],
|
1113 |
+
"correct": 1,
|
1114 |
+
"explanation": "Matplotlib is Python's primary 2D plotting library. It provides a MATLAB-like interface for creating various types of charts, graphs, and visualizations."
|
1115 |
+
}
|
1116 |
+
],
|
1117 |
+
medium: [
|
1118 |
+
{
|
1119 |
+
"question": "What is the primary purpose of one-hot encoding?",
|
1120 |
+
"options": [
|
1121 |
+
"To normalize numerical features",
|
1122 |
+
"To convert categorical variables into binary vectors",
|
1123 |
+
"To reduce dimensionality of numerical data",
|
1124 |
+
"To handle missing values in a dataset"
|
1125 |
+
],
|
1126 |
+
"correct": 1,
|
1127 |
+
"explanation": "One-hot encoding converts categorical variables into a binary matrix representation where each category becomes a binary feature. This is necessary because most machine learning algorithms work with numerical data."
|
1128 |
+
},
|
1129 |
+
{
|
1130 |
+
"question": "Which evaluation metric would be most appropriate for an imbalanced classification problem?",
|
1131 |
+
"options": [
|
1132 |
+
"Accuracy",
|
1133 |
+
"Mean Squared Error",
|
1134 |
+
"F1 Score",
|
1135 |
+
"R-squared"
|
1136 |
+
],
|
1137 |
+
"correct": 2,
|
1138 |
+
"explanation": "The F1 score is the harmonic mean of precision and recall, making it a better metric than accuracy for imbalanced datasets where one class significantly outnumbers the others."
|
1139 |
+
},
|
1140 |
+
{
|
1141 |
+
"question": "In feature selection, what does the Pearson correlation coefficient measure between two variables?",
|
1142 |
+
"options": [
|
1143 |
+
"Causal relationship",
|
1144 |
+
"Proportion of variance explained",
|
1145 |
+
"Linear relationship",
|
1146 |
+
"Statistical significance"
|
1147 |
+
],
|
1148 |
+
"correct": 2,
|
1149 |
+
"explanation": "Pearson correlation measures the linear relationship between two continuous variables, ranging from -1 (perfect negative correlation) to +1 (perfect positive correlation)."
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"question": "What does the term 'overfitting' refer to in machine learning?",
|
1153 |
+
"options": [
|
1154 |
+
"Model learns the training data too well including noise",
|
1155 |
+
"Model fails to capture patterns in the training data",
|
1156 |
+
"Model takes too long to train",
|
1157 |
+
"Model performs differently on different hardware"
|
1158 |
+
],
|
1159 |
+
"correct": 0,
|
1160 |
+
"explanation": "Overfitting occurs when a model learns the detail and noise in the training data to the extent that it negatively impacts the performance of the model on new data."
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"question": "Which technique would you use to identify clusters in unlabeled data?",
|
1164 |
+
"options": [
|
1165 |
+
"Linear Regression",
|
1166 |
+
"Principal Component Analysis",
|
1167 |
+
"K-Means Clustering",
|
1168 |
+
"Logistic Regression"
|
1169 |
+
],
|
1170 |
+
"correct": 2,
|
1171 |
+
"explanation": "K-Means is an unsupervised learning algorithm that groups similar data points into clusters. It works well for identifying natural groupings in unlabeled data."
|
1172 |
+
}
|
1173 |
+
],
|
1174 |
+
hard: [
|
1175 |
+
{
|
1176 |
+
"question": "What is the primary purpose of a dropout layer in a neural network?",
|
1177 |
+
"options": [
|
1178 |
+
"To accelerate forward propagation",
|
1179 |
+
"To regularize the model by randomly deactivating neurons",
|
1180 |
+
"To reduce the dimensionality of the input",
|
1181 |
+
"To convert the output to probabilities"
|
1182 |
+
],
|
1183 |
+
"correct": 1,
|
1184 |
+
"explanation": "Dropout is a regularization technique where randomly selected neurons are ignored during training. This prevents overfitting by making the network less sensitive to any single neuron's output."
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"question": "In the attention mechanism of transformers, what does the query-key-value computation achieve?",
|
1188 |
+
"options": [
|
1189 |
+
"It determines the degree of focus on different parts of the input",
|
1190 |
+
"It compresses the model parameters to fit memory constraints",
|
1191 |
+
"It converts discrete tokens to continuous embeddings",
|
1192 |
+
"It normalizes the gradients during backpropagation"
|
1193 |
+
],
|
1194 |
+
"correct": 0,
|
1195 |
+
"explanation": "The query-key-value computation in attention mechanisms determines how much focus to place on different parts of the input sequence by computing attention scores as the dot product of queries and keys."
|
1196 |
+
},
|
1197 |
+
{
|
1198 |
+
"question": "What is the main advantage of using a ROC curve for binary classification evaluation?",
|
1199 |
+
"options": [
|
1200 |
+
"It's threshold-independent",
|
1201 |
+
"It shows performance at perfect precision",
|
1202 |
+
"It works better than PR curves for balanced datasets",
|
1203 |
+
"It directly optimizes for model accuracy"
|
1204 |
+
],
|
1205 |
+
"correct": 0,
|
1206 |
+
"explanation": "The ROC curve plots true positive rate vs false positive rate at various classification thresholds, providing a comprehensive view of model performance across all possible thresholds."
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"question": "In Bayesian optimization, what is the role of the acquisition function?",
|
1210 |
+
"options": [
|
1211 |
+
"To model the objective function's probability distribution",
|
1212 |
+
"To determine the next set of hyperparameters to evaluate",
|
1213 |
+
"To regularize the complexity of the surrogate model",
|
1214 |
+
"To handle categorical variables in the search space"
|
1215 |
+
],
|
1216 |
+
"correct": 1,
|
1217 |
+
"explanation": "The acquisition function balances exploration and exploitation to suggest the most promising hyperparameters to evaluate next, based on the surrogate model's predictions."
|
1218 |
+
},
|
1219 |
+
{
|
1220 |
+
"question": "What differentiates a variational autoencoder (VAE) from a standard autoencoder?",
|
1221 |
+
"options": [
|
1222 |
+
"VAEs use convolutional layers exclusively",
|
1223 |
+
"VAEs learn a latent probability distribution rather than discrete encodings",
|
1224 |
+
"VAEs require labeled data for training",
|
1225 |
+
"VAEs are restricted to binary classification tasks"
|
1226 |
+
],
|
1227 |
+
"correct": 1,
|
1228 |
+
"explanation": "VAEs learn the parameters of a probability distribution representing the data in latent space, enabling generative capabilities through sampling, unlike standard autoencoders which learn deterministic encodings."
|
1229 |
+
}
|
1230 |
+
]
|
1231 |
+
};
|
1232 |
+
</script>
|
1233 |
+
<p style="border-radius: 8px; text-align: center; font-size: 12px; color: #fff; margin-top: 16px;position: fixed; left: 8px; bottom: 8px; z-index: 10; background: rgba(0, 0, 0, 0.8); padding: 4px 8px;">Made with <img src="https://enzostvs-deepsite.hf.space/logo.svg" alt="DeepSite Logo" style="width: 16px; height: 16px; vertical-align: middle;display:inline-block;margin-right:3px;filter:brightness(0) invert(1);"><a href="https://enzostvs-deepsite.hf.space" style="color: #fff;text-decoration: underline;" target="_blank" >DeepSite</a> - <a href="https://enzostvs-deepsite.hf.space?remix=ssmita25/ai-quiz-with-deepsite" style="color: #fff;text-decoration: underline;" target="_blank" >🧬 Remix</a></p></body>
|
1234 |
+
</html>
|