import streamlit as st from PIL import Image import torch from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, pipeline from colpali_engine.models import ColPali, ColPaliProcessor import os device = torch.device("cuda" if torch.cuda.is_available() else "cpu") hf_token = os.getenv('HF_TOKEN') try: model = pipeline("image-to-text", model="google/paligemma-3b-mix-448", use_auth_token=hf_token) except Exception as e: st.error(f"Error loading image-to-text model: {e}") st.stop() try: model_colpali = ColPali.from_pretrained("vidore/colpali-v1.2", torch_dtype=torch.bfloat16, use_auth_token=hf_token).to(device) processor_colpali = ColPaliProcessor.from_pretrained("google/paligemma-3b-mix-448", use_auth_token=hf_token) except Exception as e: st.error(f"Error loading ColPali model or processor: {e}") st.stop() try: model_qwen = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", use_auth_token=hf_token).to(device) processor_qwen = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", use_auth_token=hf_token) except Exception as e: st.error(f"Error loading Qwen model or processor: {e}") st.stop() st.title("OCR and Document Search Web Application") st.write("Upload an image containing text in both Hindi and English for OCR processing and keyword search.") uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: try: image = Image.open(uploaded_file) st.image(image, caption='Uploaded Image.', use_column_width=True) st.write("") conversation = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Describe this image."}]}] text_prompt = processor_qwen.apply_chat_template(conversation, add_generation_prompt=True) inputs = processor_qwen(text=[text_prompt], images=[image], padding=True, return_tensors="pt").to(device) with torch.no_grad(): output_ids = model_qwen.generate(**inputs, max_new_tokens=128) generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)] output_text = processor_qwen.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True) st.write("Extracted Text:") st.write(output_text) keyword = st.text_input("Enter a keyword to search in the extracted text:") if keyword: if keyword.lower() in output_text[0].lower(): st.write(f"Keyword '{keyword}' found in the text.") else: st.write(f"Keyword '{keyword}' not found in the text.") except Exception as e: st.error(f"An error occurred: {e}") if __name__ == "__main__": st.write("Deploying the web application...")