File size: 2,323 Bytes
7f9536b
 
f956fa7
07c7fb5
fc80367
7f9536b
fdbdba1
 
23b7134
 
 
7f9536b
718f172
c39f4d0
fc80367
 
63ef6c3
 
f956fa7
 
66d0c64
63ef6c3
fdbdba1
63ef6c3
 
 
 
 
 
 
 
 
4c83c98
63ef6c3
4c83c98
63ef6c3
fabc384
63ef6c3
 
4c83c98
 
23b7134
 
 
 
fdbdba1
 
 
 
 
 
 
 
 
7d772e3
97d9f54
c39f4d0
97d9f54
23b7134
 
 
fdbdba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import streamlit as st

import dataset_wrangler, image_analysis

dataset = "https://raw.githubusercontent.com/StateLibraryVictoria/public-domain-hack-2024/refs/heads/ch4-data-viz/datasets/ch3_colour_data_viz_suggestions_set_2_augmented.csv"

palette_columns = ["pal_1", "pal_3", "pal_5"]

st.write(
    "Scrambled Images  from [https://www.slv.vic.gov.au/images](https://www.slv.vic.gov.au/images)"
)


df = dataset_wrangler.clean_df(dataset=dataset, subset=palette_columns)


df["created_year"] = df["Created - W 3 CDTF (DCTERMS)"].apply(
    lambda x: dataset_wrangler.split_created_year(x)[0]
)


with st.form("my_form"):
    # st.write("")
    min_year = df["created_year"].min()
    max_year = df["created_year"].max()
    values = st.slider(
        "Select a year range: ",
        min_year,
        max_year,
        (min_year, max_year),
    )
    st.form_submit_button("Visualise my selection")

df = df[df["created_year"].between(values[0], values[1])]

random_selection = df.sample(n=3)

random_selection["iiif_url"] = random_selection["IE PID"].apply(
    lambda x: image_analysis.get_iiif_image_urls(x)
)

col1, col2 = st.columns([0.3, 0.7])

with col1:
    st.write(f"Random image selection")
    # for img in random_selection["iiif_url"].values.tolist():
    #     st.image(img, use_container_width=True)
    for img in random_selection.values.tolist():
        iiif_url = img[-1][0]
        title = img[2]
        palette = image_analysis.get_colour_palette_iiif_image(iiif_url=iiif_url)

        st.image(img, use_container_width=True, caption=title)
        st.image(palette[0], use_container_width=True)


p = dataset_wrangler.create_grid(df)

with col2:
    st.write(f"Plotting images from {values[0]} to {values[1]}")
    st.bokeh_chart(p, use_container_width=True)


# # !

# df = dataset_wrangler.clean_df(dataset=dataset, subset=palette_columns)

# random_selection = df.sample()

# random_selection["iiif_url"] = random_selection["IE PID"].apply(
#     lambda x: image_analysis.get_iiif_image_urls(x)
# )

# for img in random_selection.values.tolist():
#     iiif_url = img[-1][0]
#     title = img[2]
#     palette = image_analysis.get_colour_palette_iiif_image(iiif_url=iiif_url)

#     st.image(img, use_container_width=True, caption=title)
#     st.image(palette[0], use_container_width=True)