import argparse
import glob
import logging
import os
import time
from argparse import Namespace

import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from torch.utils.data import DataLoader, TensorDataset

from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_convert_examples_to_features as convert_examples_to_features
from transformers import glue_output_modes, glue_tasks_num_labels
from transformers import glue_processors as processors


logger = logging.getLogger(__name__)


class GLUETransformer(BaseTransformer):
    mode = "sequence-classification"

    def __init__(self, hparams):
        if type(hparams) == dict:
            hparams = Namespace(**hparams)
        hparams.glue_output_mode = glue_output_modes[hparams.task]
        num_labels = glue_tasks_num_labels[hparams.task]

        super().__init__(hparams, num_labels, self.mode)

    def forward(self, **inputs):
        return self.model(**inputs)

    def training_step(self, batch, batch_idx):
        inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}

        if self.config.model_type not in ["distilbert", "bart"]:
            inputs["token_type_ids"] = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None

        outputs = self(**inputs)
        loss = outputs[0]

        lr_scheduler = self.trainer.lr_schedulers[0]["scheduler"]
        tensorboard_logs = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]}
        return {"loss": loss, "log": tensorboard_logs}

    def prepare_data(self):
        "Called to initialize data. Use the call to construct features"
        args = self.hparams
        processor = processors[args.task]()
        self.labels = processor.get_labels()

        for mode in ["train", "dev"]:
            cached_features_file = self._feature_file(mode)
            if os.path.exists(cached_features_file) and not args.overwrite_cache:
                logger.info("Loading features from cached file %s", cached_features_file)
            else:
                logger.info("Creating features from dataset file at %s", args.data_dir)
                examples = (
                    processor.get_dev_examples(args.data_dir)
                    if mode == "dev"
                    else processor.get_train_examples(args.data_dir)
                )
                features = convert_examples_to_features(
                    examples,
                    self.tokenizer,
                    max_length=args.max_seq_length,
                    label_list=self.labels,
                    output_mode=args.glue_output_mode,
                )
                logger.info("Saving features into cached file %s", cached_features_file)
                torch.save(features, cached_features_file)

    def get_dataloader(self, mode: str, batch_size: int, shuffle: bool = False) -> DataLoader:
        "Load datasets. Called after prepare data."

        # We test on dev set to compare to benchmarks without having to submit to GLUE server
        mode = "dev" if mode == "test" else mode

        cached_features_file = self._feature_file(mode)
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
        all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
        all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
        all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
        if self.hparams.glue_output_mode == "classification":
            all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
        elif self.hparams.glue_output_mode == "regression":
            all_labels = torch.tensor([f.label for f in features], dtype=torch.float)

        return DataLoader(
            TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels),
            batch_size=batch_size,
            shuffle=shuffle,
        )

    def validation_step(self, batch, batch_idx):
        inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}

        if self.config.model_type not in ["distilbert", "bart"]:
            inputs["token_type_ids"] = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None

        outputs = self(**inputs)
        tmp_eval_loss, logits = outputs[:2]
        preds = logits.detach().cpu().numpy()
        out_label_ids = inputs["labels"].detach().cpu().numpy()

        return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}

    def _eval_end(self, outputs) -> tuple:
        val_loss_mean = torch.stack([x["val_loss"] for x in outputs]).mean().detach().cpu().item()
        preds = np.concatenate([x["pred"] for x in outputs], axis=0)

        if self.hparams.glue_output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif self.hparams.glue_output_mode == "regression":
            preds = np.squeeze(preds)

        out_label_ids = np.concatenate([x["target"] for x in outputs], axis=0)
        out_label_list = [[] for _ in range(out_label_ids.shape[0])]
        preds_list = [[] for _ in range(out_label_ids.shape[0])]

        results = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task, preds, out_label_ids)}

        ret = dict(results.items())
        ret["log"] = results
        return ret, preds_list, out_label_list

    def validation_epoch_end(self, outputs: list) -> dict:
        ret, preds, targets = self._eval_end(outputs)
        logs = ret["log"]
        return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}

    def test_epoch_end(self, outputs) -> dict:
        ret, predictions, targets = self._eval_end(outputs)
        logs = ret["log"]
        # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
        return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}

    @staticmethod
    def add_model_specific_args(parser, root_dir):
        BaseTransformer.add_model_specific_args(parser, root_dir)
        parser.add_argument(
            "--max_seq_length",
            default=128,
            type=int,
            help=(
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            ),
        )

        parser.add_argument(
            "--task",
            default="",
            type=str,
            required=True,
            help="The GLUE task to run",
        )
        parser.add_argument(
            "--gpus",
            default=0,
            type=int,
            help="The number of GPUs allocated for this, it is by default 0 meaning none",
        )

        parser.add_argument(
            "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
        )

        return parser


def main():
    parser = argparse.ArgumentParser()
    add_generic_args(parser, os.getcwd())
    parser = GLUETransformer.add_model_specific_args(parser, os.getcwd())
    args = parser.parse_args()

    # If output_dir not provided, a folder will be generated in pwd
    if args.output_dir is None:
        args.output_dir = os.path.join(
            "./results",
            f"{args.task}_{time.strftime('%Y%m%d_%H%M%S')}",
        )
        os.makedirs(args.output_dir)

    model = GLUETransformer(args)
    trainer = generic_train(model, args)

    # Optionally, predict on dev set and write to output_dir
    if args.do_predict:
        checkpoints = sorted(glob.glob(os.path.join(args.output_dir, "checkpoint-epoch=*.ckpt"), recursive=True))
        model = model.load_from_checkpoint(checkpoints[-1])
        return trainer.test(model)


if __name__ == "__main__":
    main()