Sonal Kumar
first commit
ed7a497
raw
history blame
29.9 kB
import importlib
import re
import warnings
from dataclasses import dataclass, field
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.pytorch_utils import Conv1D
from ..utils import (
TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING,
PeftType,
_freeze_adapter,
_get_submodules,
transpose,
)
from .lora import (
LoraConfig,
LoraLayer,
LoraModel,
mark_only_lora_as_trainable,
)
def is_bnb_available():
return importlib.util.find_spec("bitsandbytes") is not None
if is_bnb_available():
import bitsandbytes as bnb
@dataclass
class AdaLoraConfig(LoraConfig):
"""
This is the configuration class to store the configuration of a [`~peft.AdaLora`].
Args:
target_r (`int`): The target average rank of incremental matrix.
init_r (`int`): The initial rank for each incremental matrix.
tinit (`int`): The steps of initial fine-tuning warmup.
tfinal (`int`): The step of final fine-tuning.
deltaT (`int`): The time internval between two budget allocations.
beta1 (`float`): The hyperparameter of EMA for sensitivity smoothing.
beta2 (`float`): The hyperparameter of EMA for undertainty quantification.
orth_reg_weight (`float`): The coefficient of orthogonal regularization.
total_step (`int`): The total training steps that should be specified before training.
rank_pattern (`list`): The allocated rank for each weight matrix by RankAllocator.
"""
target_r: int = field(default=8, metadata={"help": "Target Lora matrix dimension."})
init_r: int = field(default=12, metadata={"help": "Intial Lora matrix dimension."})
tinit: int = field(default=0, metadata={"help": "The steps of initial warmup."})
tfinal: int = field(default=0, metadata={"help": "The steps of final warmup."})
deltaT: int = field(default=1, metadata={"help": "Step interval of rank allocation."})
beta1: float = field(default=0.85, metadata={"help": "Hyperparameter of EMA."})
beta2: float = field(default=0.85, metadata={"help": "Hyperparameter of EMA."})
orth_reg_weight: float = field(default=0.5, metadata={"help": "The orthogonal regularization coefficient."})
total_step: Optional[int] = field(default=None, metadata={"help": "The total training steps."})
rank_pattern: Optional[dict] = field(default=None, metadata={"help": "The saved rank pattern."})
def __post_init__(self):
self.peft_type = PeftType.ADALORA
class AdaLoraModel(LoraModel):
"""
Creates AdaLoRA (Adaptive LoRA) model from a pretrained transformers model. Paper:
https://openreview.net/pdf?id=lq62uWRJjiY
Args:
model ([`transformers.PreTrainedModel`]): The model to be adapted.
config ([`AdaLoraConfig`]): The configuration of the AdaLora model.
Returns:
`torch.nn.Module`: The AdaLora model.
Example::
>>> from transformers import AutoModelForSeq2SeqLM, LoraConfig >>> from peft import AdaLoraModel, AdaLoraConfig
>>> config = AdaLoraConfig(
peft_type="ADALORA", task_type="SEQ_2_SEQ_LM", r=8, lora_alpha=32, target_modules=["q", "v"],
lora_dropout=0.01,
)
>>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base") >>> model = AdaLoraModel(config, model)
**Attributes**:
- **model** ([`transformers.PreTrainedModel`]) -- The model to be adapted.
- **peft_config** ([`AdaLoraConfig`]): The configuration of the AdaLora model.
"""
def __init__(self, model, config, adapter_name):
nn.Module.__init__(self)
self.model = model
self.peft_config = config
self.add_adapter(adapter_name, self.peft_config[adapter_name])
def add_adapter(self, adapter_name, config=None):
if config is not None:
model_config = self.model.config.to_dict() if hasattr(self.model.config, "to_dict") else self.model.config
config = self._prepare_adalora_config(config, model_config)
self.peft_config[adapter_name] = config
self._find_and_replace(adapter_name)
if len(self.peft_config) > 1 and self.peft_config[adapter_name].bias != "none":
raise ValueError(
"AdaLoraModel supports only 1 adapter with bias. When using multiple adapters, set bias to 'none' for all adapters."
)
traininable_mode_counter = 0
for config in self.peft_config.values():
if not config.inference_mode:
traininable_mode_counter += 1
if traininable_mode_counter > 1:
raise ValueError(
"AdaLoraModel supports only 1 trainable adapter. "
"When using multiple adapters, set inference_mode to True for all adapters except the one you want to train."
)
mark_only_lora_as_trainable(self.model, self.peft_config[adapter_name].bias)
if self.peft_config[adapter_name].inference_mode:
_freeze_adapter(self.model, adapter_name)
else:
self.trainable_adapter_name = adapter_name
self.rankallocator = RankAllocator(self.model, self.peft_config[adapter_name], self.trainable_adapter_name)
def _find_and_replace(self, adapter_name):
lora_config = self.peft_config[adapter_name]
loaded_in_8bit = getattr(self.model, "is_loaded_in_8bit", False)
if loaded_in_8bit and not is_bnb_available():
raise ImportError(
"To use Lora with 8-bit quantization, please install the `bitsandbytes` package. "
"You can install it with `pip install bitsandbytes`."
)
is_target_modules_in_base_model = False
kwargs = {
"r": lora_config.init_r,
"lora_alpha": lora_config.lora_alpha,
"lora_dropout": lora_config.lora_dropout,
"fan_in_fan_out": lora_config.fan_in_fan_out,
"init_lora_weights": lora_config.init_lora_weights,
}
key_list = [key for key, _ in self.model.named_modules()]
for key in key_list:
if isinstance(lora_config.target_modules, str):
target_module_found = re.fullmatch(lora_config.target_modules, key)
else:
target_module_found = any(key.endswith(target_key) for target_key in lora_config.target_modules)
if target_module_found:
if not is_target_modules_in_base_model:
is_target_modules_in_base_model = True
parent, target, target_name = _get_submodules(self.model, key)
bias = target.bias is not None
if isinstance(target, LoraLayer):
target.update_layer(
adapter_name,
lora_config.init_r,
lora_config.lora_alpha,
lora_config.lora_dropout,
lora_config.init_lora_weights,
)
else:
if loaded_in_8bit and isinstance(target, bnb.nn.Linear8bitLt):
kwargs.update(
{
"has_fp16_weights": target.state.has_fp16_weights,
"memory_efficient_backward": target.state.memory_efficient_backward,
"threshold": target.state.threshold,
"index": target.index,
}
)
new_module = SVDLinear8bitLt(
adapter_name, target.in_features, target.out_features, bias=bias, **kwargs
)
else:
if isinstance(target, torch.nn.Linear):
in_features, out_features = target.in_features, target.out_features
if kwargs["fan_in_fan_out"]:
warnings.warn(
"fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. "
"Setting fan_in_fan_out to False."
)
kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = False
elif isinstance(target, Conv1D):
in_features, out_features = (
target.weight.ds_shape if hasattr(target.weight, "ds_shape") else target.weight.shape
)
if not kwargs["fan_in_fan_out"]:
warnings.warn(
"fan_in_fan_out is set to False but the target module is `Conv1D`. "
"Setting fan_in_fan_out to True."
)
kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = True
else:
raise ValueError(
f"Target module {target} is not supported. "
f"Currently, only `torch.nn.Linear` and `Conv1D` are supported."
)
new_module = SVDLinear(adapter_name, in_features, out_features, bias=bias, **kwargs)
self._replace_module(parent, target_name, new_module, target)
if not is_target_modules_in_base_model:
raise ValueError(
f"Target modules {lora_config.target_modules} not found in the base model. "
f"Please check the target modules and try again."
)
def __getattr__(self, name: str):
"""Forward missing attributes to the wrapped module."""
try:
return super().__getattr__(name) # defer to nn.Module's logic
except AttributeError:
return getattr(self.model, name)
def forward(self, *args, **kwargs):
outputs = self.model.forward(*args, **kwargs)
# Calculate the orthogonal regularization
orth_reg_weight = self.peft_config[self.trainable_adapter_name].orth_reg_weight
assert orth_reg_weight > 0
if hasattr(outputs, "loss"):
regu_loss = 0
num_param = 0
for n, p in self.model.named_parameters():
if ("lora_A" in n or "lora_B" in n) and self.trainable_adapter_name in n:
para_cov = p @ p.T if "lora_A" in n else p.T @ p
I = torch.eye(*para_cov.size(), out=torch.empty_like(para_cov))
I.requires_grad = False
num_param += 1
regu_loss += torch.norm(para_cov - I, p="fro")
regu_loss = regu_loss / num_param
outputs.loss += orth_reg_weight * regu_loss
return outputs
def resize_modules_by_rank_pattern(self, rank_pattern, adapter_name):
lora_config = self.peft_config[adapter_name]
for name, rank_idx in rank_pattern.items():
if isinstance(rank_idx, list):
rank = sum(rank_idx)
elif isinstance(rank_idx, torch.Tensor):
rank_idx = rank_idx.view(-1)
rank = rank_idx.sum().item()
else:
raise ValueError("Unexcepted type of rank_idx")
key = ".".join(name.split(".")[0:-2]) if adapter_name in name else ".".join(name.split(".")[0:-1])
_, target, _ = _get_submodules(self.model, key)
lora_E_weights = target.lora_E[adapter_name][rank_idx]
lora_A_weights = target.lora_A[adapter_name][rank_idx]
lora_B_weights = target.lora_B[adapter_name][:, rank_idx]
ranknum = target.ranknum[adapter_name]
target.update_layer(
adapter_name,
rank,
lora_config.lora_alpha,
lora_config.lora_dropout,
lora_config.init_lora_weights,
)
with torch.no_grad():
if rank > 0:
target.lora_E[adapter_name].copy_(lora_E_weights)
target.lora_A[adapter_name].copy_(lora_A_weights)
target.lora_B[adapter_name].copy_(lora_B_weights)
# The scaling is exactly as the previous
target.ranknum[adapter_name].copy_(ranknum)
def resize_state_dict_by_rank_pattern(self, rank_pattern, state_dict, adapter_name):
for name, rank_idx in rank_pattern.items():
rank = sum(rank_idx)
prefix = ".".join(name.split(".")[0:-2]) if adapter_name in name else ".".join(name.split(".")[0:-1])
for layer in ["lora_E", "lora_A", "lora_B"]:
key = f"base_model.model.{prefix}.{layer}.{adapter_name}"
if layer != "lora_B":
state_dict[key] = (
state_dict[key][rank_idx] if rank != state_dict[key].shape[0] else state_dict[key]
)
else:
state_dict[key] = (
state_dict[key][:, rank_idx] if rank != state_dict[key].shape[1] else state_dict[key]
)
return state_dict
def update_and_allocate(self, global_step):
lora_config = self.peft_config[self.trainable_adapter_name]
# Update the importance score and allocate the budget
if global_step < lora_config.total_step - lora_config.tfinal:
_, rank_pattern = self.rankallocator.update_and_allocate(self.model, global_step)
if rank_pattern:
lora_config.rank_pattern = rank_pattern
# Finalize the budget allocation
elif global_step == lora_config.total_step - lora_config.tfinal:
_, rank_pattern = self.rankallocator.update_and_allocate(self.model, global_step, force_mask=True)
# for some reason, this freezes the trainable parameters and nothing gets updates
# self.resize_modules_by_rank_pattern(rank_pattern, self.trainable_adapter_name)
lora_config.rank_pattern = rank_pattern
self.rankallocator.reset_ipt()
# Currently using inefficient way to mask the unimportant weights using the rank pattern
# due to problem mentioned above
elif global_step > lora_config.total_step - lora_config.tfinal:
self.rankallocator.mask_using_rank_pattern(self.model, lora_config.rank_pattern)
# Pass the function and do forward propagation
else:
return None
@staticmethod
def _prepare_adalora_config(peft_config, model_config):
if peft_config.target_modules is None:
if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING:
raise ValueError("Please specify `target_modules` in `peft_config`")
peft_config.target_modules = TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING[
model_config["model_type"]
]
if peft_config.inference_mode:
peft_config.merge_weights = True
return peft_config
class AdaLoraLayer(LoraLayer):
def __init__(
self,
in_features: int,
out_features: int,
):
super().__init__(in_features, out_features)
self.lora_E = nn.ParameterDict({})
self.lora_A = nn.ParameterDict({})
self.lora_B = nn.ParameterDict({})
self.ranknum = nn.ParameterDict({})
def update_layer(self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights):
self.r[adapter_name] = r
self.lora_alpha[adapter_name] = lora_alpha
if lora_dropout > 0.0:
lora_dropout_layer = nn.Dropout(p=lora_dropout)
else:
def lora_dropout_layer(x):
return x
self.lora_dropout.update(nn.ModuleDict({adapter_name: lora_dropout_layer}))
# Actual trainable parameters
# Right singular vectors
self.lora_A.update(nn.ParameterDict({adapter_name: nn.Parameter(torch.zeros(r, self.in_features))}))
# Singular values
self.lora_E.update(nn.ParameterDict({adapter_name: nn.Parameter(torch.zeros(r, 1))}))
# Left singular vectors
self.lora_B.update(nn.ParameterDict({adapter_name: nn.Parameter(torch.zeros(self.out_features, r))}))
# The current rank
self.ranknum.update(nn.ParameterDict({adapter_name: nn.Parameter(torch.zeros(1), requires_grad=False)}))
self.ranknum[adapter_name].data.fill_(float(r))
self.ranknum[adapter_name].requires_grad = False
self.scaling[adapter_name] = lora_alpha if lora_alpha > 0 else float(r)
if init_lora_weights:
self.reset_lora_parameters(adapter_name)
self.to(self.weight.device)
def reset_lora_parameters(self, adapter_name):
if adapter_name in self.lora_A.keys():
nn.init.zeros_(self.lora_E[adapter_name])
nn.init.normal_(self.lora_A[adapter_name], mean=0.0, std=0.02)
nn.init.normal_(self.lora_B[adapter_name], mean=0.0, std=0.02)
class SVDLinear(nn.Linear, AdaLoraLayer):
# SVD-based adaptation by a dense layer
def __init__(
self,
adapter_name: str,
in_features: int,
out_features: int,
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.0,
fan_in_fan_out: bool = False,
**kwargs,
):
init_lora_weights = kwargs.pop("init_lora_weights", True)
nn.Linear.__init__(self, in_features, out_features, **kwargs)
AdaLoraLayer.__init__(self, in_features=in_features, out_features=out_features)
# Freezing the pre-trained weight matrix
self.weight.requires_grad = False
self.fan_in_fan_out = fan_in_fan_out
if fan_in_fan_out:
self.weight.data = self.weight.data.T
nn.Linear.reset_parameters(self)
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights)
self.active_adapter = adapter_name
def merge(self):
if self.active_adapter not in self.lora_A.keys():
return
if self.merged:
warnings.warn("Already merged. Nothing to do.")
return
if self.r[self.active_adapter] > 0:
self.weight.data += (
transpose(
self.lora_B[self.active_adapter]
@ (self.lora_A[self.active_adapter] * self.lora_E[self.active_adapter])
)
* self.scaling[self.active_adapter]
/ (self.ranknum[self.active_adapter] + 1e-5)
)
self.merged = True
def unmerge(self):
if self.active_adapter not in self.lora_A.keys():
return
if not self.merged:
warnings.warn("Already unmerged. Nothing to do.")
return
if self.r[self.active_adapter] > 0:
self.weight.data -= (
transpose(
self.lora_B[self.active_adapter]
@ (self.lora_A[self.active_adapter] * self.lora_E[self.active_adapter])
)
* self.scaling[self.active_adapter]
/ (self.ranknum[self.active_adapter] + 1e-5)
)
self.merged = False
def forward(self, x: torch.Tensor):
if self.active_adapter not in self.lora_A.keys():
return F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias)
if self.disable_adapters:
if self.r[self.active_adapter] > 0 and self.merged:
self.unmerge()
result = F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias)
elif self.r[self.active_adapter] > 0 and not self.merged:
result = F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias)
result += (
(
self.lora_dropout[self.active_adapter](x)
@ (self.lora_A[self.active_adapter] * self.lora_E[self.active_adapter]).T
@ self.lora_B[self.active_adapter].T
)
* self.scaling[self.active_adapter]
/ (self.ranknum[self.active_adapter] + 1e-5)
)
else:
result = F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias)
return result
if is_bnb_available():
class SVDLinear8bitLt(bnb.nn.Linear8bitLt, AdaLoraLayer):
# Low-rank matrix for SVD-based adaptation
def __init__(
self,
adapter_name,
in_features,
out_features,
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.0,
**kwargs,
):
bnb.nn.Linear8bitLt.__init__(
self,
in_features,
out_features,
bias=kwargs.get("bias", True),
has_fp16_weights=kwargs.get("has_fp16_weights", True),
memory_efficient_backward=kwargs.get("memory_efficient_backward", False),
threshold=kwargs.get("threshold", 0.0),
index=kwargs.get("index", None),
)
AdaLoraLayer.__init__(self, in_features=in_features, out_features=out_features)
# Freezing the pre-trained weight matrix
self.weight.requires_grad = False
init_lora_weights = kwargs.pop("init_lora_weights", True)
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights)
self.active_adapter = adapter_name
def forward(self, x: torch.Tensor):
result = super().forward(x)
if self.disable_adapters or self.active_adapter not in self.lora_A.keys():
return result
elif self.r[self.active_adapter] > 0:
if not torch.is_autocast_enabled():
expected_dtype = result.dtype
if x.dtype != torch.float32:
x = x.float()
output = (
(
self.lora_dropout[self.active_adapter](x)
@ (self.lora_A[self.active_adapter] * self.lora_E[self.active_adapter]).T
@ self.lora_B[self.active_adapter].T
).to(expected_dtype)
* self.scaling[self.active_adapter]
/ (self.ranknum[self.active_adapter] + 1e-5)
)
else:
output = (
(
self.lora_dropout[self.active_adapter](x)
@ (self.lora_A[self.active_adapter] * self.lora_E[self.active_adapter]).T
@ self.lora_B[self.active_adapter].T
)
* self.scaling[self.active_adapter]
/ (self.ranknum[self.active_adapter] + 1e-5)
)
result += output
return result
class RankAllocator(object):
"""
The RankAllocator for AdaLoraModel. Paper: https://openreview.net/pdf?id=lq62uWRJjiY
Args:
config ([`AdaLoraConfig`]): The configuration of the AdaLora model.
model: the model that we apply AdaLoRA to.
"""
def __init__(self, model, peft_config, adapter_name):
self.peft_config = peft_config
self.adapter_name = adapter_name
self.beta1 = peft_config.beta1
self.beta2 = peft_config.beta2
assert self.beta1 > 0 and self.beta1 < 1
assert self.beta2 > 0 and self.beta2 < 1
self.reset_ipt()
self._set_budget_scheduler(model)
def set_total_step(self, total_step):
self.peft_config.total_step = total_step
def reset_ipt(self):
self.ipt = {}
self.exp_avg_ipt = {}
self.exp_avg_unc = {}
def _set_budget_scheduler(self, model):
self.init_bgt = 0
self.name_set = set()
for n, p in model.named_parameters():
if f"lora_A.{self.adapter_name}" in n:
self.init_bgt += p.size(0)
self.name_set.add(n.replace("lora_A", "%s"))
self.name_set = sorted(self.name_set)
# The total final rank budget
self.target_bgt = self.peft_config.target_r * len(self.name_set)
def budget_schedule(self, step: int):
tinit = self.peft_config.tinit
tfinal = self.peft_config.tfinal
total_step = self.peft_config.total_step
# Initial warmup
if step <= tinit:
budget = self.init_bgt
mask_ind = False
# Final fine-tuning
elif step > total_step - tfinal:
budget = self.target_bgt
mask_ind = True
else:
# Budget decreasing with a cubic scheduler
mul_coeff = 1 - (step - tinit) / (total_step - tfinal - tinit)
budget = int((self.init_bgt - self.target_bgt) * (mul_coeff**3) + self.target_bgt)
mask_ind = True if step % self.peft_config.deltaT == 0 else False
return budget, mask_ind
def update_ipt(self, model):
# Update the sensitivity and uncertainty for every weight
for n, p in model.named_parameters():
if "lora_" in n and self.adapter_name in n:
if n not in self.ipt:
self.ipt[n] = torch.zeros_like(p)
self.exp_avg_ipt[n] = torch.zeros_like(p)
self.exp_avg_unc[n] = torch.zeros_like(p)
with torch.no_grad():
self.ipt[n] = (p * p.grad).abs().detach()
# Sensitivity smoothing
self.exp_avg_ipt[n] = self.beta1 * self.exp_avg_ipt[n] + (1 - self.beta1) * self.ipt[n]
# Uncertainty quantification
self.exp_avg_unc[n] = (
self.beta2 * self.exp_avg_unc[n] + (1 - self.beta2) * (self.ipt[n] - self.exp_avg_ipt[n]).abs()
)
def _element_score(self, n):
return self.exp_avg_ipt[n] * self.exp_avg_unc[n]
def _combine_ipt(self, ipt_E, ipt_AB):
ipt_AB = ipt_AB.sum(dim=1, keepdim=False)
sum_ipt = ipt_E.view(-1) + ipt_AB.view(-1)
return sum_ipt
def mask_to_budget(self, model, budget):
value_ipt = {}
vector_ipt = {}
triplet_ipt = {}
# Get the importance score for A, E, B
for n, p in model.named_parameters():
if f"lora_A.{self.adapter_name}" in n:
entry_ipt = self._element_score(n)
comb_ipt = torch.mean(entry_ipt, dim=1, keepdim=True)
name_m = n.replace("lora_A", "%s")
if name_m not in vector_ipt:
vector_ipt[name_m] = [comb_ipt]
else:
vector_ipt[name_m].append(comb_ipt)
if f"lora_B.{self.adapter_name}" in n:
entry_ipt = self._element_score(n)
comb_ipt = torch.mean(entry_ipt, dim=0, keepdim=False).view(-1, 1)
name_m = n.replace("lora_B", "%s")
if name_m not in vector_ipt:
vector_ipt[name_m] = [comb_ipt]
else:
vector_ipt[name_m].append(comb_ipt)
if f"lora_E.{self.adapter_name}" in n:
entry_ipt = self._element_score(n)
name_m = n.replace("lora_E", "%s")
value_ipt[name_m] = entry_ipt
all_score = []
# Calculate the score for each triplet
for name_m in vector_ipt:
ipt_E = value_ipt[name_m]
ipt_AB = torch.cat(vector_ipt[name_m], dim=1)
sum_ipt = self._combine_ipt(ipt_E, ipt_AB)
name_E = name_m % "lora_E"
triplet_ipt[name_E] = sum_ipt.view(-1, 1)
all_score.append(sum_ipt.view(-1))
# Get the threshold by ranking ipt
mask_threshold = torch.kthvalue(
torch.cat(all_score),
k=self.init_bgt - budget,
)[0].item()
rank_pattern = {}
# Mask the unimportant triplets
with torch.no_grad():
for n, p in model.named_parameters():
if f"lora_E.{self.adapter_name}" in n:
p.masked_fill_(triplet_ipt[n] <= mask_threshold, 0.0)
rank_pattern[n] = (~(triplet_ipt[n] <= mask_threshold)).view(-1).tolist()
return rank_pattern
def update_and_allocate(self, model, global_step, force_mask=False):
# # Update the importance score and allocate the budget
if global_step < self.peft_config.total_step - self.peft_config.tfinal:
self.update_ipt(model)
budget, mask_ind = self.budget_schedule(global_step)
# Allocate the budget according to importance scores
if mask_ind or force_mask:
rank_pattern = self.mask_to_budget(model, budget)
else:
rank_pattern = None
return budget, rank_pattern
def mask_using_rank_pattern(self, model, rank_pattern):
# Mask the unimportant triplets
is_adapter_name_truncated = False
if self.adapter_name not in next(iter(rank_pattern.keys())):
is_adapter_name_truncated = True
with torch.no_grad():
for n, p in model.named_parameters():
if f"lora_E.{self.adapter_name}" in n:
key = n if not is_adapter_name_truncated else n.replace(f".{self.adapter_name}", "")
mask = torch.Tensor(rank_pattern[key]).unsqueeze(-1).to(p.device)
p.masked_fill_(~mask.bool(), 0.0)