import gradio as gr from transformers import pipeline #def classify_sentiment(audio, model): #pipe = pipeline("audio-classification", model=model) #sentiment_classifier = pipe(audio) #return sentiment_classifier def classify_sentiment(audio, model): pipe = pipeline("audio-classification", model=model) sentiment_classifier = pipe(audio) preds_dict={} for sentiment_classifier in preds[0]: preds_dict[pred['label']] = pred['score'] return preds_dict input_audio = [gr.inputs.Audio(source="microphone", type="filepath", label="Record/ Drop audio"), gr.inputs.Dropdown(["DrishtiSharma/wav2vec2-base-finetuned-sentiment-mesd-v11", "hackathon-pln-es/wav2vec2-base-finetuned-sentiment-mesd"], label="Model Name")] label = gr.outputs.Label(num_top_classes=5) gr.Interface( fn = classify_sentiment, inputs = input_audio, outputs = label, #examples=[["test1.wav", "DrishtiSharma/wav2vec2-base-finetuned-sentiment-mesd-v11"], ["test2.wav", "hackathon-pln-es/wav2vec2-base-finetuned-sentiment-mesd"]], theme="grass").launch()