Spaces:
Runtime error
Runtime error
refactor so we have in and then i can add out
Browse files- charles_actor.py +1 -1
- streamlit_av_queue.py +8 -8
- input_av_queue_actor.py → webrtc_av_queue_actor.py +19 -19
charles_actor.py
CHANGED
|
@@ -56,7 +56,7 @@ class CharlesActor:
|
|
| 56 |
if len(self._debug_queue) > 0:
|
| 57 |
prompt = self._debug_queue.pop(0)
|
| 58 |
self._respond_to_prompt_actor.enqueue_prompt.remote(prompt)
|
| 59 |
-
audio_frames = await self._streamlit_av_queue.
|
| 60 |
if len(audio_frames) > 0:
|
| 61 |
total_audio_frames += len(audio_frames)
|
| 62 |
# Concatenate all audio frames into a single buffer
|
|
|
|
| 56 |
if len(self._debug_queue) > 0:
|
| 57 |
prompt = self._debug_queue.pop(0)
|
| 58 |
self._respond_to_prompt_actor.enqueue_prompt.remote(prompt)
|
| 59 |
+
audio_frames = await self._streamlit_av_queue.get_in_audio_frames_async()
|
| 60 |
if len(audio_frames) > 0:
|
| 61 |
total_audio_frames += len(audio_frames)
|
| 62 |
# Concatenate all audio frames into a single buffer
|
streamlit_av_queue.py
CHANGED
|
@@ -6,15 +6,15 @@ import threading
|
|
| 6 |
|
| 7 |
import numpy as np
|
| 8 |
import ray
|
| 9 |
-
from
|
| 10 |
import pydub
|
| 11 |
import torch
|
| 12 |
|
| 13 |
class StreamlitAVQueue:
|
| 14 |
def __init__(self, audio_bit_rate=16000):
|
| 15 |
self._audio_bit_rate = audio_bit_rate
|
| 16 |
-
self.queue_actor =
|
| 17 |
-
name="
|
| 18 |
get_if_exists=True,
|
| 19 |
).remote()
|
| 20 |
|
|
@@ -26,7 +26,7 @@ class StreamlitAVQueue:
|
|
| 26 |
for frame in frames:
|
| 27 |
shared_tensor = torch.from_numpy(frame.to_ndarray())
|
| 28 |
shared_tensor_ref = ray.put(shared_tensor)
|
| 29 |
-
self.queue_actor.
|
| 30 |
except Exception as e:
|
| 31 |
print (e)
|
| 32 |
return frames
|
|
@@ -50,7 +50,7 @@ class StreamlitAVQueue:
|
|
| 50 |
sound_chunk += sound
|
| 51 |
shared_buffer = np.array(sound_chunk.get_array_of_samples())
|
| 52 |
shared_buffer_ref = ray.put(shared_buffer)
|
| 53 |
-
self.queue_actor.
|
| 54 |
except Exception as e:
|
| 55 |
print (e)
|
| 56 |
|
|
@@ -66,10 +66,10 @@ class StreamlitAVQueue:
|
|
| 66 |
new_frames.append(new_frame)
|
| 67 |
return new_frames
|
| 68 |
|
| 69 |
-
async def
|
| 70 |
-
shared_buffers = await self.queue_actor.
|
| 71 |
return shared_buffers
|
| 72 |
|
| 73 |
async def get_video_frames_async(self) -> List[av.AudioFrame]:
|
| 74 |
-
shared_tensors = await self.queue_actor.
|
| 75 |
return shared_tensors
|
|
|
|
| 6 |
|
| 7 |
import numpy as np
|
| 8 |
import ray
|
| 9 |
+
from webrtc_av_queue_actor import WebRtcAVQueueActor
|
| 10 |
import pydub
|
| 11 |
import torch
|
| 12 |
|
| 13 |
class StreamlitAVQueue:
|
| 14 |
def __init__(self, audio_bit_rate=16000):
|
| 15 |
self._audio_bit_rate = audio_bit_rate
|
| 16 |
+
self.queue_actor = WebRtcAVQueueActor.options(
|
| 17 |
+
name="WebRtcAVQueueActor",
|
| 18 |
get_if_exists=True,
|
| 19 |
).remote()
|
| 20 |
|
|
|
|
| 26 |
for frame in frames:
|
| 27 |
shared_tensor = torch.from_numpy(frame.to_ndarray())
|
| 28 |
shared_tensor_ref = ray.put(shared_tensor)
|
| 29 |
+
self.queue_actor.enqueue_in_video_frame.remote(shared_tensor_ref)
|
| 30 |
except Exception as e:
|
| 31 |
print (e)
|
| 32 |
return frames
|
|
|
|
| 50 |
sound_chunk += sound
|
| 51 |
shared_buffer = np.array(sound_chunk.get_array_of_samples())
|
| 52 |
shared_buffer_ref = ray.put(shared_buffer)
|
| 53 |
+
self.queue_actor.enqueue_in_audio_frame.remote(shared_buffer_ref)
|
| 54 |
except Exception as e:
|
| 55 |
print (e)
|
| 56 |
|
|
|
|
| 66 |
new_frames.append(new_frame)
|
| 67 |
return new_frames
|
| 68 |
|
| 69 |
+
async def get_in_audio_frames_async(self) -> List[av.AudioFrame]:
|
| 70 |
+
shared_buffers = await self.queue_actor.get_in_audio_frames.remote()
|
| 71 |
return shared_buffers
|
| 72 |
|
| 73 |
async def get_video_frames_async(self) -> List[av.AudioFrame]:
|
| 74 |
+
shared_tensors = await self.queue_actor.get_in_video_frames.remote()
|
| 75 |
return shared_tensors
|
input_av_queue_actor.py → webrtc_av_queue_actor.py
RENAMED
|
@@ -6,38 +6,38 @@ import numpy as np
|
|
| 6 |
|
| 7 |
|
| 8 |
@ray.remote
|
| 9 |
-
class
|
| 10 |
def __init__(self):
|
| 11 |
-
self.
|
| 12 |
-
self.
|
| 13 |
|
| 14 |
-
def
|
| 15 |
-
if self.
|
| 16 |
-
evicted_item = self.
|
| 17 |
del evicted_item
|
| 18 |
-
self.
|
| 19 |
|
| 20 |
-
def
|
| 21 |
-
if self.
|
| 22 |
-
evicted_item = self.
|
| 23 |
del evicted_item
|
| 24 |
-
self.
|
| 25 |
|
| 26 |
|
| 27 |
-
def
|
| 28 |
audio_frames = []
|
| 29 |
-
if self.
|
| 30 |
return audio_frames
|
| 31 |
-
while not self.
|
| 32 |
-
shared_tensor_ref = self.
|
| 33 |
audio_frames.append(shared_tensor_ref)
|
| 34 |
return audio_frames
|
| 35 |
|
| 36 |
-
def
|
| 37 |
video_frames = []
|
| 38 |
-
if self.
|
| 39 |
return video_frames
|
| 40 |
-
while not self.
|
| 41 |
-
shared_tensor_ref = self.
|
| 42 |
video_frames.append(shared_tensor_ref)
|
| 43 |
return video_frames
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
@ray.remote
|
| 9 |
+
class WebRtcAVQueueActor:
|
| 10 |
def __init__(self):
|
| 11 |
+
self.in_audio_queue = Queue(maxsize=100) # Adjust the size as needed
|
| 12 |
+
self.in_video_queue = Queue(maxsize=100) # Adjust the size as needed
|
| 13 |
|
| 14 |
+
def enqueue_in_video_frame(self, shared_tensor_ref):
|
| 15 |
+
if self.in_video_queue.full():
|
| 16 |
+
evicted_item = self.in_video_queue.get()
|
| 17 |
del evicted_item
|
| 18 |
+
self.in_video_queue.put(shared_tensor_ref)
|
| 19 |
|
| 20 |
+
def enqueue_in_audio_frame(self, shared_buffer_ref):
|
| 21 |
+
if self.in_audio_queue.full():
|
| 22 |
+
evicted_item = self.in_audio_queue.get()
|
| 23 |
del evicted_item
|
| 24 |
+
self.in_audio_queue.put(shared_buffer_ref)
|
| 25 |
|
| 26 |
|
| 27 |
+
def get_in_audio_frames(self):
|
| 28 |
audio_frames = []
|
| 29 |
+
if self.in_audio_queue.empty():
|
| 30 |
return audio_frames
|
| 31 |
+
while not self.in_audio_queue.empty():
|
| 32 |
+
shared_tensor_ref = self.in_audio_queue.get()
|
| 33 |
audio_frames.append(shared_tensor_ref)
|
| 34 |
return audio_frames
|
| 35 |
|
| 36 |
+
def get_in_video_frames(self):
|
| 37 |
video_frames = []
|
| 38 |
+
if self.in_video_queue.empty():
|
| 39 |
return video_frames
|
| 40 |
+
while not self.in_video_queue.empty():
|
| 41 |
+
shared_tensor_ref = self.in_video_queue.get()
|
| 42 |
video_frames.append(shared_tensor_ref)
|
| 43 |
return video_frames
|