sashavor
commited on
Commit
·
2abad25
1
Parent(s):
c7a61a0
adding app file
Browse files
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import random
|
3 |
+
|
4 |
+
def gen_ims(prompt, im_prompt=None, seed=None, n_steps=10, method='plms'):
|
5 |
+
if seed == None :
|
6 |
+
seed = random.randint(0, 10000)
|
7 |
+
print( prompt, im_prompt, seed, n_steps)
|
8 |
+
prompts = [prompt]
|
9 |
+
im_prompts = []
|
10 |
+
if im_prompt != None:
|
11 |
+
im_prompts = [im_prompt]
|
12 |
+
pil_ims = generate(n=1, prompts=prompts, images=im_prompts, seed=seed, steps=n_steps, method=method)
|
13 |
+
return pil_ims[0]
|
14 |
+
|
15 |
+
|
16 |
+
with gr.Blocks() as demo:
|
17 |
+
gr.Markdown("# Stable Diffusion Explorer")
|
18 |
+
gr.Markdown("#### Try your hand at guessing the category of each image displayed, from the options provided. Compare your answers to that of a neural network trained on the dataset, and see if you can do better!")
|
19 |
+
with gr.Row():
|
20 |
+
with gr.Column():
|
21 |
+
gr.inputs.Textbox(label="Text prompt"),
|
22 |
+
gr.inputs.Image(optional=True, label="Image prompt", type='filepath'),
|
23 |
+
with gr.Column():
|
24 |
+
gr.inputs.Textbox(label="Text prompt"),
|
25 |
+
gr.inputs.Image(optional=True, label="Image prompt", type='filepath'),
|
26 |
+
|
27 |
+
|
28 |
+
demo.launch()
|