import gradio as gr import pandas as pd import numpy as np import os import re from datetime import datetime import json import torch from tqdm import tqdm from concurrent.futures import ProcessPoolExecutor, as_completed import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from huggingface_hub import HfApi import shutil import tempfile import time from stark_qa import load_qa from stark_qa.evaluator import Evaluator from utils.hub_storage import HubStorage from utils.token_handler import TokenHandler # Initialize storage once at startup try: REPO_ID = "snap-stanford/stark-leaderboard" # Replace with your space name hub_storage = HubStorage(REPO_ID) except Exception as e: raise RuntimeError(f"Failed to initialize HuggingFace Hub storage: {e}") def process_single_instance(args): """Process a single instance with progress tracking""" idx, eval_csv, qa_dataset, evaluator, eval_metrics = args try: query, query_id, answer_ids, meta_info = qa_dataset[idx] # Print progress for debugging print(f"Processing query_id: {query_id}") try: pred_rank = eval_csv[eval_csv['query_id'] == query_id]['pred_rank'].item() except Exception as e: print(f"Error getting pred_rank for query_id {query_id}: {str(e)}") raise if isinstance(pred_rank, str): pred_rank = eval(pred_rank) pred_dict = {pred_rank[i]: -i for i in range(min(100, len(pred_rank)))} answer_ids = torch.LongTensor(answer_ids) result = evaluator.evaluate(pred_dict, answer_ids, metrics=eval_metrics) result["idx"], result["query_id"] = idx, query_id return result except Exception as e: print(f"Error in process_single_instance for idx {idx}: {str(e)}") raise def compute_metrics(csv_path: str, dataset: str, split: str, num_workers: int = 4): candidate_ids_dict = { 'amazon': [i for i in range(957192)], 'mag': [i for i in range(1172724, 1872968)], 'prime': [i for i in range(129375)] } start_time = time.time() try: eval_csv = pd.read_csv(csv_path) if 'query_id' not in eval_csv.columns: raise ValueError('No `query_id` column found in the submitted csv.') if 'pred_rank' not in eval_csv.columns: raise ValueError('No `pred_rank` column found in the submitted csv.') eval_csv = eval_csv[['query_id', 'pred_rank']] if dataset not in candidate_ids_dict: raise ValueError(f"Invalid dataset '{dataset}', expected one of {list(candidate_ids_dict.keys())}.") if split not in ['test', 'test-0.1', 'human_generated_eval']: raise ValueError(f"Invalid split '{split}', expected one of ['test', 'test-0.1', 'human_generated_eval'].") print("Initializing evaluator...") evaluator = Evaluator(candidate_ids_dict[dataset]) eval_metrics = ['hit@1', 'hit@5', 'recall@20', 'mrr'] print("Loading QA dataset...") qa_dataset = load_qa(dataset, human_generated_eval=split == 'human_generated_eval') split_idx = qa_dataset.get_idx_split() all_indices = split_idx[split].tolist() print(f"Dataset loaded, processing {len(all_indices)} instances") results_list = [] # query_ids = [] # # Prepare args for each worker # args = [(idx, eval_csv, qa_dataset, evaluator, eval_metrics) for idx in all_indices] # with ProcessPoolExecutor(max_workers=num_workers) as executor: # futures = [executor.submit(process_single_instance, arg) for arg in args] # for future in tqdm(as_completed(futures), total=len(futures)): # result = future.result() # This will raise an error if the worker encountered one # results_list.append(result) # query_ids.append(result['query_id']) # # Concatenate results and compute final metrics # eval_csv = pd.concat([eval_csv, pd.DataFrame(results_list)], ignore_index=True) # final_results = { # metric: np.mean(eval_csv[eval_csv['query_id'].isin(query_ids)][metric]) for metric in eval_metrics # } # return final_result batch_size = 50 # Smaller batch size for more frequent updates total_batches = (len(all_indices) + batch_size - 1) // batch_size for batch_num in range(total_batches): batch_start = batch_num * batch_size batch_end = min((batch_num + 1) * batch_size, len(all_indices)) batch_indices = all_indices[batch_start:batch_end] print(f"\nProcessing batch {batch_num + 1}/{total_batches}") print(f"Batch size: {len(batch_indices)}") args = [(idx, eval_csv, qa_dataset, evaluator, eval_metrics) for idx in batch_indices] with ProcessPoolExecutor(max_workers=num_workers) as executor: futures = [executor.submit(process_single_instance, arg) for arg in args] for future in tqdm(as_completed(futures), total=len(futures), desc=f"Batch {batch_num + 1}"): try: result = future.result() results_list.append(result) except Exception as e: print(f"Error processing result: {str(e)}") raise print("\nComputing final metrics...") results_df = pd.DataFrame(results_list) final_results = { metric: results_df[metric].mean() for metric in eval_metrics } elapsed_time = time.time() - start_time print(f"\nMetrics computation completed in {elapsed_time:.2f} seconds") return final_results except Exception as error: elapsed_time = time.time() - start_time error_msg = f"Error in compute_metrics ({elapsed_time:.2f}s): {str(error)}" print(error_msg) return error_msg except pd.errors.EmptyDataError: return "Error: The CSV file is empty or could not be read. Please check the file and try again." except FileNotFoundError: return f"Error: The file {csv_path} could not be found. Please check the file path and try again." except Exception as error: return f"{error}" # Data dictionaries for leaderboard data_synthesized_full = { 'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2'], 'STARK-AMAZON_Hit@1': [44.94, 15.29, 30.96, 26.56, 39.16, 40.93, 21.74, 42.08, 40.07, 46.10], 'STARK-AMAZON_Hit@5': [67.42, 47.93, 51.06, 50.01, 62.73, 64.37, 41.65, 66.87, 64.98, 66.02], 'STARK-AMAZON_R@20': [53.77, 44.49, 41.95, 52.05, 53.29, 54.28, 33.22, 56.52, 55.12, 53.44], 'STARK-AMAZON_MRR': [55.30, 30.20, 40.66, 37.75, 50.35, 51.60, 31.47, 53.46, 51.55, 55.51], 'STARK-MAG_Hit@1': [25.85, 10.51, 21.96, 12.88, 29.08, 30.06, 18.01, 37.90, 25.92, 31.18], 'STARK-MAG_Hit@5': [45.25, 35.23, 36.50, 39.01, 49.61, 50.58, 34.85, 56.74, 50.43, 46.42], 'STARK-MAG_R@20': [45.69, 42.11, 35.32, 46.97, 48.36, 50.49, 35.46, 46.40, 50.80, 43.94], 'STARK-MAG_MRR': [34.91, 21.34, 29.14, 29.12, 38.62, 39.66, 26.10, 47.25, 36.94, 38.39], 'STARK-PRIME_Hit@1': [12.75, 4.46, 6.53, 8.85, 12.63, 10.85, 10.10, 15.57, 15.10, 11.75], 'STARK-PRIME_Hit@5': [27.92, 21.85, 15.67, 21.35, 31.49, 30.23, 22.49, 33.42, 33.56, 23.85], 'STARK-PRIME_R@20': [31.25, 30.13, 16.52, 29.63, 36.00, 37.83, 26.34, 39.09, 38.05, 25.04], 'STARK-PRIME_MRR': [19.84, 12.38, 11.05, 14.73, 21.41, 19.99, 16.12, 24.11, 23.49, 17.39] } data_synthesized_10 = { 'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'], 'STARK-AMAZON_Hit@1': [42.68, 16.46, 30.09, 25.00, 39.02, 43.29, 18.90, 43.29, 40.85, 44.31, 45.49, 44.79], 'STARK-AMAZON_Hit@5': [67.07, 50.00, 49.27, 48.17, 64.02, 67.68, 37.80, 71.34, 62.80, 65.24, 71.13, 71.17], 'STARK-AMAZON_R@20': [54.48, 42.15, 41.91, 51.65, 49.30, 56.04, 34.73, 56.14, 52.47, 51.00, 53.77, 55.35], 'STARK-AMAZON_MRR': [54.02, 30.20, 39.30, 36.87, 50.32, 54.20, 28.76, 55.07, 51.54, 55.07, 55.91, 55.69], 'STARK-MAG_Hit@1': [27.81, 11.65, 22.89, 12.03, 28.20, 34.59, 19.17, 38.35, 25.56, 31.58, 36.54, 40.90], 'STARK-MAG_Hit@5': [45.48, 36.84, 37.26, 37.97, 52.63, 50.75, 33.46, 58.64, 50.37, 47.36, 53.17, 58.18], 'STARK-MAG_R@20': [44.59, 42.30, 44.16, 47.98, 49.25, 50.75, 29.85, 46.38, 53.03, 45.72, 48.36, 48.60], 'STARK-MAG_MRR': [35.97, 21.82, 30.00, 28.70, 38.55, 42.90, 26.06, 48.25, 36.82, 38.98, 44.15, 49.00], 'STARK-PRIME_Hit@1': [13.93, 5.00, 6.78, 7.14, 15.36, 12.14, 9.29, 16.79, 15.36, 15.00, 17.79, 18.28], 'STARK-PRIME_Hit@5': [31.07, 23.57, 16.15, 17.14, 31.07, 31.42, 20.7, 34.29, 32.86, 26.07, 36.90, 37.28], 'STARK-PRIME_R@20': [32.84, 30.50, 17.07, 32.95, 37.88, 37.34, 25.54, 41.11, 40.99, 27.78, 35.57, 34.05], 'STARK-PRIME_MRR': [21.68, 13.50, 11.42, 16.27, 23.50, 21.23, 15.00, 24.99, 23.70, 19.98, 26.27, 26.55] } data_human_generated = { 'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'], 'STARK-AMAZON_Hit@1': [27.16, 16.05, 25.93, 22.22, 39.50, 35.80, 29.63, 40.74, 46.91, 33.33, 53.09, 50.62], 'STARK-AMAZON_Hit@5': [51.85, 39.51, 54.32, 49.38, 64.19, 62.96, 46.91, 71.60, 72.84, 55.56, 74.07, 75.31], 'STARK-AMAZON_R@20': [29.23, 15.23, 23.69, 21.54, 35.46, 33.01, 21.21, 36.30, 40.22, 29.03, 35.46, 35.46], 'STARK-AMAZON_MRR': [18.79, 27.21, 37.12, 31.33, 52.65, 47.84, 38.61, 53.21, 58.74, 43.77, 62.11, 61.06], 'STARK-MAG_Hit@1': [32.14, 4.72, 25.00, 20.24, 28.57, 22.62, 16.67, 34.52, 23.81, 33.33, 38.10, 36.90], 'STARK-MAG_Hit@5': [41.67, 9.52, 30.95, 26.19, 41.67, 36.90, 28.57, 44.04, 41.67, 36.90, 45.24, 46.43], 'STARK-MAG_R@20': [32.46, 25.00, 27.24, 28.76, 35.95, 32.44, 21.74, 34.57, 39.85, 30.50, 35.95, 35.95], 'STARK-MAG_MRR': [37.42, 7.90, 27.98, 25.53, 35.81, 29.68, 21.59, 38.72, 31.43, 35.97, 42.00, 40.65], 'STARK-PRIME_Hit@1': [22.45, 2.04, 7.14, 6.12, 17.35, 16.33, 9.18, 25.51, 24.49, 15.31, 28.57, 28.57], 'STARK-PRIME_Hit@5': [41.84, 9.18, 13.27, 13.27, 34.69, 32.65, 21.43, 41.84, 39.80, 26.53, 46.94, 44.90], 'STARK-PRIME_R@20': [42.32, 10.69, 11.72, 17.62, 41.09, 39.01, 26.77, 48.10, 47.21, 25.56, 41.61, 41.61], 'STARK-PRIME_MRR': [30.37, 7.05, 10.07, 9.39, 26.35, 24.33, 15.24, 34.28, 32.98, 19.67, 36.32, 34.82] } # Initialize DataFrames df_synthesized_full = pd.DataFrame(data_synthesized_full) df_synthesized_10 = pd.DataFrame(data_synthesized_10) df_human_generated = pd.DataFrame(data_human_generated) # Model type definitions model_types = { 'Sparse Retriever': ['BM25'], 'Small Dense Retrievers': ['DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)'], 'LLM-based Dense Retrievers': ['ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b'], 'Multivector Retrievers': ['multi-ada-002', 'ColBERTv2'], 'LLM Rerankers': ['Claude3 Reranker', 'GPT4 Reranker'], 'Others': [] # Will be populated dynamically with submitted models } # Submission form validation functions def validate_email(email_str): """Validate email format(s)""" emails = [e.strip() for e in email_str.split(';')] email_pattern = re.compile(r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$') return all(email_pattern.match(email) for email in emails) def validate_github_url(url): """Validate GitHub URL format""" github_pattern = re.compile( r'^https?:\/\/(?:www\.)?github\.com\/[\w-]+\/[\w.-]+\/?$' ) return bool(github_pattern.match(url)) def validate_csv(file_path): """Validate CSV file format and content with better error handling""" try: df = pd.read_csv(file_path) required_cols = ['query_id', 'pred_rank'] # Check for required columns missing_cols = [col for col in required_cols if col not in df.columns] if missing_cols: return False, f"Missing required columns: {', '.join(missing_cols)}" # Validate first few rows to ensure proper format for idx, row in df.head().iterrows(): try: rank_list = eval(row['pred_rank']) if isinstance(row['pred_rank'], str) else row['pred_rank'] if not isinstance(rank_list, list): return False, f"pred_rank must be a list (row {idx})" if len(rank_list) < 20: return False, f"pred_rank must contain at least 20 candidates (row {idx})" except Exception as e: return False, f"Invalid pred_rank format in row {idx}: {str(e)}" return True, "Valid CSV file" except pd.errors.EmptyDataError: return False, "CSV file is empty" except Exception as e: return False, f"Error processing CSV: {str(e)}" def sanitize_name(name): """Sanitize name for file system use""" return re.sub(r'[^a-zA-Z0-9]', '_', name) def read_json_from_hub(api: HfApi, repo_id: str, file_path: str) -> dict: """ Read and parse JSON file from HuggingFace Hub. Args: api: HuggingFace API instance repo_id: Repository ID file_path: Path to file in repository Returns: dict: Parsed JSON content """ try: # Download the file content as bytes content = api.hf_hub_download( repo_id=repo_id, filename=file_path, repo_type="space" ) # Read and parse JSON with open(content, 'r') as f: return json.load(f) except Exception as e: print(f"Error reading JSON file {file_path}: {str(e)}") return None def scan_submissions_directory(): """ Scans the submissions directory and updates the model types dictionary with submitted models. """ try: # Initialize HuggingFace API api = HfApi() # Track submissions for each split submissions_by_split = { 'test': [], 'test-0.1': [], 'human_generated_eval': [] } # Get all files from repository try: all_files = api.list_repo_files( repo_id=REPO_ID, repo_type="space" ) # Filter for files in submissions directory repo_files = [f for f in all_files if f.startswith('submissions/')] except Exception as e: print(f"Error listing repository contents: {str(e)}") return submissions_by_split # Group files by team folders folder_files = {} for filepath in repo_files: parts = filepath.split('/') if len(parts) < 3: # Need at least submissions/team_folder/file continue folder_name = parts[1] # team_folder name if folder_name not in folder_files: folder_files[folder_name] = [] folder_files[folder_name].append(filepath) # Process each team folder for folder_name, files in folder_files.items(): try: # Find latest.json in this folder latest_file = next((f for f in files if f.endswith('latest.json')), None) if not latest_file: print(f"No latest.json found in {folder_name}") continue # Read latest.json latest_info = read_json_from_hub(api, REPO_ID, latest_file) if not latest_info: print(f"Failed to read latest.json for {folder_name}") continue timestamp = latest_info.get('latest_submission') if not timestamp: print(f"No timestamp found in latest.json for {folder_name}") continue # Find metadata file for latest submission metadata_file = next( (f for f in files if f.endswith(f'metadata_{timestamp}.json')), None ) if not metadata_file: print(f"No matching metadata file found for {folder_name} timestamp {timestamp}") continue # Read metadata file submission_data = read_json_from_hub(api, REPO_ID, metadata_file) if not submission_data: print(f"Failed to read metadata for {folder_name}") continue if latest_info.get('status') != 'approved': print(f"Skipping unapproved submission in {folder_name}") continue # Add to submissions by split split = submission_data.get('Split') if split in submissions_by_split: submissions_by_split[split].append(submission_data) # Update model types if necessary method_name = submission_data.get('Method Name') model_type = submission_data.get('Model Type', 'Others') # Add to model type if it's a new method method_exists = any(method_name in methods for methods in model_types.values()) if not method_exists and model_type in model_types: model_types[model_type].append(method_name) except Exception as e: print(f"Error processing folder {folder_name}: {str(e)}") continue return submissions_by_split except Exception as e: print(f"Error scanning submissions directory: {str(e)}") return None def initialize_leaderboard(): """ Initialize the leaderboard with baseline results and submitted results. """ global df_synthesized_full, df_synthesized_10, df_human_generated try: # First, initialize with baseline results df_synthesized_full = pd.DataFrame(data_synthesized_full) df_synthesized_10 = pd.DataFrame(data_synthesized_10) df_human_generated = pd.DataFrame(data_human_generated) print("Initialized with baseline results") # Then scan and add submitted results submissions = scan_submissions_directory() if submissions: for split, split_submissions in submissions.items(): for submission in split_submissions: if submission.get('results'): # Make sure we have results # Update appropriate DataFrame based on split if split == 'test': df_to_update = df_synthesized_full elif split == 'test-0.1': df_to_update = df_synthesized_10 else: # human_generated_eval df_to_update = df_human_generated # Prepare new row data new_row = { 'Method': submission['Method Name'], f'STARK-{submission["Dataset"].upper()}_Hit@1': submission['results']['hit@1'], f'STARK-{submission["Dataset"].upper()}_Hit@5': submission['results']['hit@5'], f'STARK-{submission["Dataset"].upper()}_R@20': submission['results']['recall@20'], f'STARK-{submission["Dataset"].upper()}_MRR': submission['results']['mrr'] } # Update existing row or add new one method_mask = df_to_update['Method'] == submission['Method Name'] if method_mask.any(): for col in new_row: df_to_update.loc[method_mask, col] = new_row[col] else: df_to_update.loc[len(df_to_update)] = new_row print("Leaderboard initialization complete") except Exception as e: print(f"Error initializing leaderboard: {str(e)}") def get_file_content(file_path): """ Helper function to safely read file content from HuggingFace repository """ try: api = HfApi() content_path = api.hf_hub_download( repo_id=REPO_ID, filename=file_path, repo_type="space" ) with open(content_path, 'r') as f: return f.read() except Exception as e: print(f"Error reading file {file_path}: {str(e)}") return None def save_submission(submission_data, csv_file): """ Save submission data and CSV file using model_name_team_name format Args: submission_data (dict): Metadata and results for the submission csv_file: The uploaded CSV file object """ # Create folder name from model name and team name model_name_clean = sanitize_name(submission_data['Method Name']) team_name_clean = sanitize_name(submission_data['Team Name']) timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") # Create folder name: model_name_team_name folder_name = f"{model_name_clean}_{team_name_clean}" submission_id = f"{folder_name}_{timestamp}" # Create submission directory structure base_dir = "submissions" submission_dir = os.path.join(base_dir, folder_name) os.makedirs(submission_dir, exist_ok=True) # Save CSV file with timestamp to allow multiple submissions csv_filename = f"predictions_{timestamp}.csv" csv_path = os.path.join(submission_dir, csv_filename) if hasattr(csv_file, 'name'): with open(csv_file.name, 'rb') as source, open(csv_path, 'wb') as target: target.write(source.read()) # Add file paths to submission data submission_data.update({ "csv_path": csv_path, "submission_id": submission_id, "folder_name": folder_name }) # Save metadata as JSON with timestamp metadata_path = os.path.join(submission_dir, f"metadata_{timestamp}.json") with open(metadata_path, 'w') as f: json.dump(submission_data, f, indent=4) # Update latest.json to track most recent submission latest_path = os.path.join(submission_dir, "latest.json") with open(latest_path, 'w') as f: json.dump({ "latest_submission": timestamp, "status": "pending_review", "method_name": submission_data['Method Name'] }, f, indent=4) return submission_id def update_leaderboard_data(submission_data): """ Update leaderboard data with new submission results Only updates the specific dataset submitted, preventing empty rows """ global df_synthesized_full, df_synthesized_10, df_human_generated # Determine which DataFrame to update based on split split_to_df = { 'test': df_synthesized_full, 'test-0.1': df_synthesized_10, 'human_generated_eval': df_human_generated } df_to_update = split_to_df[submission_data['Split']] dataset = submission_data['Dataset'].upper() # Prepare new row data with only the relevant dataset columns new_row = { 'Method': submission_data['Method Name'] } # Only add metrics for the submitted dataset new_row.update({ f'STARK-{dataset}_Hit@1': submission_data['results']['hit@1'], f'STARK-{dataset}_Hit@5': submission_data['results']['hit@5'], f'STARK-{dataset}_R@20': submission_data['results']['recall@20'], f'STARK-{dataset}_MRR': submission_data['results']['mrr'] }) # Check if method already exists method_mask = df_to_update['Method'] == submission_data['Method Name'] if method_mask.any(): # Update only the columns for the submitted dataset for col in new_row: df_to_update.loc[method_mask, col] = new_row[col] else: # For new methods, create a row with only the submitted dataset's values df_to_update.loc[len(df_to_update)] = new_row # Function to get emails from meta_data def get_emails_from_metadata(meta_data): """ Extracts emails from the meta_data dictionary. Args: meta_data (dict): The metadata dictionary that contains the 'Contact Email(s)' field. Returns: list: A list of email addresses. """ return [email.strip() for email in meta_data.get("Contact Email(s)", "").split(";")] # Function to format meta_data as an HTML table (without Prediction CSV) def format_metadata_as_table(meta_data): """ Formats metadata dictionary into an HTML table for the email. Handles multiple contact emails separated by a semicolon. Args: meta_data (dict): Dictionary containing submission metadata. Returns: str: HTML string representing the metadata table. """ table_rows = "" for key, value in meta_data.items(): if key == "Contact Email(s)": # Ensure that contact emails are split by semicolon emails = value.split(';') formatted_emails = "; ".join([email.strip() for email in emails]) table_rows += f"{key}{formatted_emails}" elif key != "Prediction CSV": # Exclude the Prediction CSV field table_rows += f"{key}{value}" table_html = f""" {table_rows}
""" return table_html # Function to get emails from meta_data def get_emails_from_metadata(meta_data): """ Extracts emails from the meta_data dictionary. Args: meta_data (dict): The metadata dictionary that contains the 'Contact Email(s)' field. Returns: list: A list of email addresses. """ return [email.strip() for email in meta_data.get("Contact Email(s)", "").split(";")] def format_evaluation_results(results): """ Formats the evaluation results dictionary into a readable string. Args: results (dict): Dictionary containing evaluation metrics and their values. Returns: str: Formatted string of evaluation results. """ result_lines = [f"{metric}: {value}" for metric, value in results.items()] return "\n".join(result_lines) def get_model_type_for_method(method_name): """ Find the model type category for a given method name. Returns 'Others' if not found in predefined categories. """ for type_name, methods in model_types.items(): if method_name in methods: return type_name return 'Others' def validate_model_type(method_name, selected_type): """ Validate if the selected model type is appropriate for the method name. Returns (is_valid, message). """ # Check if method exists in any category existing_type = None for type_name, methods in model_types.items(): if method_name in methods: existing_type = type_name break # If method exists, it must be submitted under its predefined category if existing_type: if existing_type != selected_type: return False, f"This method name is already registered under '{existing_type}'. Please use the correct category." return True, "Valid model type" # For new methods, any category is valid return True, "Valid model type" def process_submission( method_name, team_name, dataset, split, contact_email, code_repo, csv_file, model_description, hardware, paper_link, model_type ): """Process submission with progress updates""" try: # 1. Initial validation yield "Validating submission details..." if not all([method_name, team_name, dataset, split, contact_email, code_repo, csv_file, model_type]): return "Error: Please fill in all required fields" # 2. Process CSV yield "Processing CSV file..." temp_csv_path = None if isinstance(csv_file, str): temp_csv_path = csv_file else: try: temp_fd, temp_csv_path = tempfile.mkstemp(suffix='.csv') os.close(temp_fd) shutil.copy2(csv_file.name, temp_csv_path) except Exception as e: return f"Error processing CSV file: {str(e)}" # 3. Validate CSV format yield "Validating CSV format..." try: df = pd.read_csv(temp_csv_path) if 'query_id' not in df.columns or 'pred_rank' not in df.columns: return "Error: CSV must contain 'query_id' and 'pred_rank' columns" except Exception as e: return f"Error reading CSV: {str(e)}" # 4. Compute metrics with reduced workers yield f"Computing metrics for {dataset}..." results = compute_metrics( csv_path=temp_csv_path, dataset=dataset.lower(), split=split, num_workers=2 # Reduced from 4 to 2 ) if isinstance(results, str): return f"Evaluation error: {results}" # 5. Process results yield "Processing results..." processed_results = { "hit@1": round(results['hit@1'] * 100, 2), "hit@5": round(results['hit@5'] * 100, 2), "recall@20": round(results['recall@20'] * 100, 2), "mrr": round(results['mrr'] * 100, 2) } # 6. Save submission yield "Saving submission..." timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") folder_name = f"{sanitize_name(method_name)}_{sanitize_name(team_name)}" submission_data = { "Method Name": method_name, "Team Name": team_name, "Dataset": dataset, "Split": split, "Contact Email(s)": contact_email, "Code Repository": code_repo, "Model Description": model_description, "Hardware": hardware, "Paper link": paper_link, "Model Type": model_type, "results": processed_results } try: # Save to HuggingFace Hub csv_path_in_repo = f"submissions/{folder_name}/predictions_{timestamp}.csv" hub_storage.save_to_hub( file_content=temp_csv_path, path_in_repo=csv_path_in_repo, commit_message=f"Add submission: {method_name}" ) except Exception as e: return f"Error saving to HuggingFace Hub: {str(e)}" # 7. Update leaderboard yield "Updating leaderboard..." update_leaderboard_data(submission_data) return f""" Submission successful! Evaluation Results: Hit@1: {processed_results['hit@1']:.2f}% Hit@5: {processed_results['hit@5']:.2f}% Recall@20: {processed_results['recall@20']:.2f}% MRR: {processed_results['mrr']:.2f}% Your submission will appear in the leaderboard after review. """ except Exception as e: return f"Error: {str(e)}" finally: # Cleanup if temp_csv_path and os.path.exists(temp_csv_path): os.unlink(temp_csv_path) def filter_by_model_type(df, selected_types): """ Filter DataFrame by selected model types, including submitted models. """ if not selected_types: return df.head(0) # Get all models from selected types selected_models = [] for type_name in selected_types: selected_models.extend(model_types[type_name]) # Filter DataFrame to include only selected models return df[df['Method'].isin(selected_models)] def format_dataframe(df, dataset): """ Format DataFrame for display, removing rows with no data for the selected dataset """ # Select relevant columns columns = ['Method'] + [col for col in df.columns if dataset in col] filtered_df = df[columns].copy() # Remove rows where all metric columns are empty/NaN for this dataset metric_columns = [col for col in filtered_df.columns if col != 'Method'] filtered_df = filtered_df.dropna(subset=metric_columns, how='all') # Rename columns to remove dataset prefix filtered_df.columns = [col.split('_')[-1] if '_' in col else col for col in filtered_df.columns] # Sort by MRR if 'MRR' in filtered_df.columns: filtered_df = filtered_df.sort_values('MRR', ascending=False) return filtered_df def update_tables(selected_types): """ Update tables based on selected model types. Include all models from selected categories. """ if not selected_types: return [df.head(0) for df in [df_synthesized_full, df_synthesized_10, df_human_generated]] filtered_df_full = filter_by_model_type(df_synthesized_full, selected_types) filtered_df_10 = filter_by_model_type(df_synthesized_10, selected_types) filtered_df_human = filter_by_model_type(df_human_generated, selected_types) outputs = [] for df in [filtered_df_full, filtered_df_10, filtered_df_human]: for dataset in ['AMAZON', 'MAG', 'PRIME']: outputs.append(format_dataframe(df, f"STARK-{dataset}")) return outputs css = """ table > thead { white-space: normal } table { --cell-width-1: 250px } table > tbody > tr > td:nth-child(2) > div { overflow-x: auto } .tab-nav { border-bottom: 1px solid rgba(255, 255, 255, 0.1); margin-bottom: 1rem; } """ # Main application with gr.Blocks(css=css) as demo: gr.Markdown("# Semi-structured Retrieval Benchmark (STaRK) Leaderboard") gr.Markdown("Refer to the [STaRK paper](https://arxiv.org/pdf/2404.13207) for details on metrics, tasks and models.") # Initialize leaderboard at startup print("Starting leaderboard initialization...") initialize_leaderboard() print("Leaderboard initialization finished") # Model type filter model_type_filter = gr.CheckboxGroup( choices=list(model_types.keys()), value=list(model_types.keys()), label="Model types", interactive=True ) # Initialize dataframes list all_dfs = [] # Create nested tabs structure with gr.Tabs() as outer_tabs: with gr.TabItem("Synthesized (full)"): with gr.Tabs() as inner_tabs1: for dataset in ['AMAZON', 'MAG', 'PRIME']: with gr.TabItem(dataset): all_dfs.append(gr.DataFrame(interactive=False)) with gr.TabItem("Synthesized (10%)"): with gr.Tabs() as inner_tabs2: for dataset in ['AMAZON', 'MAG', 'PRIME']: with gr.TabItem(dataset): all_dfs.append(gr.DataFrame(interactive=False)) with gr.TabItem("Human-Generated"): with gr.Tabs() as inner_tabs3: for dataset in ['AMAZON', 'MAG', 'PRIME']: with gr.TabItem(dataset): all_dfs.append(gr.DataFrame(interactive=False)) # Submission section gr.Markdown("---") gr.Markdown("## Submit Your Results") gr.Markdown(""" Submit your results to be included in the leaderboard. Please ensure your submission meets all requirements. For questions, contact stark-qa@cs.stanford.edu. Detailed instructions can be referred at [submission instructions](https://docs.google.com/document/d/11coGjTmOEi9p9-PUq1oy0eTOj8f_8CVQhDl5_0FKT14/edit?usp=sharing). """) with gr.Row(): with gr.Column(): method_name = gr.Textbox( label="Method Name (max 25 chars)*", placeholder="e.g., MyRetrievalModel-v1" ) dataset = gr.Dropdown( choices=["amazon", "mag", "prime"], label="Dataset*", value="amazon" ) split = gr.Dropdown( choices=["test", "test-0.1", "human_generated_eval"], label="Split*", value="test" ) team_name = gr.Textbox( label="Team Name (max 25 chars)*", placeholder="e.g., Stanford NLP" ) contact_email = gr.Textbox( label="Contact Email(s)*", placeholder="email@example.com; another@example.com" ) model_type = gr.Dropdown( choices=list(model_types.keys()), label="Model Type*", value="Others", info="Select the appropriate category for your model" ) with gr.Column(): model_description = gr.Textbox( label="Model Description*", lines=3, placeholder="Briefly describe how your retriever model works..." ) code_repo = gr.Textbox( label="Code Repository*", placeholder="https://github.com/snap-stanford/stark-leaderboard" ) hardware = gr.Textbox( label="Hardware Specifications*", placeholder="e.g., 4x NVIDIA A100 80GB" ) csv_file = gr.File( label="Prediction CSV*", file_types=[".csv"], type="filepath" ) paper_link = gr.Textbox( label="Paper Link (Optional)", placeholder="https://arxiv.org/abs/..." ) submit_btn = gr.Button("Submit", variant="primary") result = gr.Textbox(label="Submission Status", interactive=False) # Set up event handlers model_type_filter.change( update_tables, inputs=[model_type_filter], outputs=all_dfs ) # Event handler for submission button submit_btn.click( fn=process_submission, inputs=[ method_name, team_name, dataset, split, contact_email, code_repo, csv_file, model_description, hardware, paper_link, model_type ], outputs=result, api_name="submit" ).success( # Add success handler to update tables fn=update_tables, inputs=[model_type_filter], outputs=all_dfs ) # Initial table update demo.load( update_tables, inputs=[model_type_filter], outputs=all_dfs ) # Launch the application demo.launch()