Shiyu Zhao
Update space
d30ceda
raw
history blame
33 kB
import gradio as gr
import pandas as pd
import numpy as np
import os
import re
from datetime import datetime
import json
import torch
from tqdm import tqdm
from concurrent.futures import ProcessPoolExecutor, as_completed
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from huggingface_hub import HfApi
import shutil
import tempfile
from stark_qa import load_qa
from stark_qa.evaluator import Evaluator
from utils.hub_storage import HubStorage
from utils.token_handler import TokenHandler
# Initialize storage once at startup
try:
REPO_ID = "snap-stanford/stark-leaderboard" # Replace with your space name
hub_storage = HubStorage(REPO_ID)
except Exception as e:
raise RuntimeError(f"Failed to initialize HuggingFace Hub storage: {e}")
def process_single_instance(args):
idx, eval_csv, qa_dataset, evaluator, eval_metrics = args
query, query_id, answer_ids, meta_info = qa_dataset[idx]
try:
pred_rank = eval_csv[eval_csv['query_id'] == query_id]['pred_rank'].item()
except IndexError:
raise IndexError(f'Error when processing query_id={query_id}, please make sure the predicted results exist for this query.')
except Exception as e:
raise RuntimeError(f'Unexpected error occurred while fetching prediction rank for query_id={query_id}: {e}')
if isinstance(pred_rank, str):
try:
pred_rank = eval(pred_rank)
except SyntaxError as e:
raise ValueError(f'Failed to parse pred_rank as a list for query_id={query_id}: {e}')
if not isinstance(pred_rank, list):
raise TypeError(f'Error when processing query_id={query_id}, expected pred_rank to be a list but got {type(pred_rank)}.')
pred_dict = {pred_rank[i]: -i for i in range(min(100, len(pred_rank)))}
answer_ids = torch.LongTensor(answer_ids)
result = evaluator.evaluate(pred_dict, answer_ids, metrics=eval_metrics)
result["idx"], result["query_id"] = idx, query_id
return result
def compute_metrics(csv_path: str, dataset: str, split: str, num_workers: int = 4):
candidate_ids_dict = {
'amazon': [i for i in range(957192)],
'mag': [i for i in range(1172724, 1872968)],
'prime': [i for i in range(129375)]
}
try:
eval_csv = pd.read_csv(csv_path)
if 'query_id' not in eval_csv.columns:
raise ValueError('No `query_id` column found in the submitted csv.')
if 'pred_rank' not in eval_csv.columns:
raise ValueError('No `pred_rank` column found in the submitted csv.')
eval_csv = eval_csv[['query_id', 'pred_rank']]
if dataset not in candidate_ids_dict:
raise ValueError(f"Invalid dataset '{dataset}', expected one of {list(candidate_ids_dict.keys())}.")
if split not in ['test', 'test-0.1', 'human_generated_eval']:
raise ValueError(f"Invalid split '{split}', expected one of ['test', 'test-0.1', 'human_generated_eval'].")
evaluator = Evaluator(candidate_ids_dict[dataset])
eval_metrics = ['hit@1', 'hit@5', 'recall@20', 'mrr']
qa_dataset = load_qa(dataset, human_generated_eval=split == 'human_generated_eval')
split_idx = qa_dataset.get_idx_split()
all_indices = split_idx[split].tolist()
results_list = []
query_ids = []
# Prepare args for each worker
args = [(idx, eval_csv, qa_dataset, evaluator, eval_metrics) for idx in all_indices]
with ProcessPoolExecutor(max_workers=num_workers) as executor:
futures = [executor.submit(process_single_instance, arg) for arg in args]
for future in tqdm(as_completed(futures), total=len(futures)):
result = future.result() # This will raise an error if the worker encountered one
results_list.append(result)
query_ids.append(result['query_id'])
# Concatenate results and compute final metrics
eval_csv = pd.concat([eval_csv, pd.DataFrame(results_list)], ignore_index=True)
final_results = {
metric: np.mean(eval_csv[eval_csv['query_id'].isin(query_ids)][metric]) for metric in eval_metrics
}
return final_results
except pd.errors.EmptyDataError:
return "Error: The CSV file is empty or could not be read. Please check the file and try again."
except FileNotFoundError:
return f"Error: The file {csv_path} could not be found. Please check the file path and try again."
except Exception as error:
return f"{error}"
# Data dictionaries for leaderboard
data_synthesized_full = {
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2'],
'STARK-AMAZON_Hit@1': [44.94, 15.29, 30.96, 26.56, 39.16, 40.93, 21.74, 42.08, 40.07, 46.10],
'STARK-AMAZON_Hit@5': [67.42, 47.93, 51.06, 50.01, 62.73, 64.37, 41.65, 66.87, 64.98, 66.02],
'STARK-AMAZON_R@20': [53.77, 44.49, 41.95, 52.05, 53.29, 54.28, 33.22, 56.52, 55.12, 53.44],
'STARK-AMAZON_MRR': [55.30, 30.20, 40.66, 37.75, 50.35, 51.60, 31.47, 53.46, 51.55, 55.51],
'STARK-MAG_Hit@1': [25.85, 10.51, 21.96, 12.88, 29.08, 30.06, 18.01, 37.90, 25.92, 31.18],
'STARK-MAG_Hit@5': [45.25, 35.23, 36.50, 39.01, 49.61, 50.58, 34.85, 56.74, 50.43, 46.42],
'STARK-MAG_R@20': [45.69, 42.11, 35.32, 46.97, 48.36, 50.49, 35.46, 46.40, 50.80, 43.94],
'STARK-MAG_MRR': [34.91, 21.34, 29.14, 29.12, 38.62, 39.66, 26.10, 47.25, 36.94, 38.39],
'STARK-PRIME_Hit@1': [12.75, 4.46, 6.53, 8.85, 12.63, 10.85, 10.10, 15.57, 15.10, 11.75],
'STARK-PRIME_Hit@5': [27.92, 21.85, 15.67, 21.35, 31.49, 30.23, 22.49, 33.42, 33.56, 23.85],
'STARK-PRIME_R@20': [31.25, 30.13, 16.52, 29.63, 36.00, 37.83, 26.34, 39.09, 38.05, 25.04],
'STARK-PRIME_MRR': [19.84, 12.38, 11.05, 14.73, 21.41, 19.99, 16.12, 24.11, 23.49, 17.39]
}
data_synthesized_10 = {
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'],
'STARK-AMAZON_Hit@1': [42.68, 16.46, 30.09, 25.00, 39.02, 43.29, 18.90, 43.29, 40.85, 44.31, 45.49, 44.79],
'STARK-AMAZON_Hit@5': [67.07, 50.00, 49.27, 48.17, 64.02, 67.68, 37.80, 71.34, 62.80, 65.24, 71.13, 71.17],
'STARK-AMAZON_R@20': [54.48, 42.15, 41.91, 51.65, 49.30, 56.04, 34.73, 56.14, 52.47, 51.00, 53.77, 55.35],
'STARK-AMAZON_MRR': [54.02, 30.20, 39.30, 36.87, 50.32, 54.20, 28.76, 55.07, 51.54, 55.07, 55.91, 55.69],
'STARK-MAG_Hit@1': [27.81, 11.65, 22.89, 12.03, 28.20, 34.59, 19.17, 38.35, 25.56, 31.58, 36.54, 40.90],
'STARK-MAG_Hit@5': [45.48, 36.84, 37.26, 37.97, 52.63, 50.75, 33.46, 58.64, 50.37, 47.36, 53.17, 58.18],
'STARK-MAG_R@20': [44.59, 42.30, 44.16, 47.98, 49.25, 50.75, 29.85, 46.38, 53.03, 45.72, 48.36, 48.60],
'STARK-MAG_MRR': [35.97, 21.82, 30.00, 28.70, 38.55, 42.90, 26.06, 48.25, 36.82, 38.98, 44.15, 49.00],
'STARK-PRIME_Hit@1': [13.93, 5.00, 6.78, 7.14, 15.36, 12.14, 9.29, 16.79, 15.36, 15.00, 17.79, 18.28],
'STARK-PRIME_Hit@5': [31.07, 23.57, 16.15, 17.14, 31.07, 31.42, 20.7, 34.29, 32.86, 26.07, 36.90, 37.28],
'STARK-PRIME_R@20': [32.84, 30.50, 17.07, 32.95, 37.88, 37.34, 25.54, 41.11, 40.99, 27.78, 35.57, 34.05],
'STARK-PRIME_MRR': [21.68, 13.50, 11.42, 16.27, 23.50, 21.23, 15.00, 24.99, 23.70, 19.98, 26.27, 26.55]
}
data_human_generated = {
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'],
'STARK-AMAZON_Hit@1': [27.16, 16.05, 25.93, 22.22, 39.50, 35.80, 29.63, 40.74, 46.91, 33.33, 53.09, 50.62],
'STARK-AMAZON_Hit@5': [51.85, 39.51, 54.32, 49.38, 64.19, 62.96, 46.91, 71.60, 72.84, 55.56, 74.07, 75.31],
'STARK-AMAZON_R@20': [29.23, 15.23, 23.69, 21.54, 35.46, 33.01, 21.21, 36.30, 40.22, 29.03, 35.46, 35.46],
'STARK-AMAZON_MRR': [18.79, 27.21, 37.12, 31.33, 52.65, 47.84, 38.61, 53.21, 58.74, 43.77, 62.11, 61.06],
'STARK-MAG_Hit@1': [32.14, 4.72, 25.00, 20.24, 28.57, 22.62, 16.67, 34.52, 23.81, 33.33, 38.10, 36.90],
'STARK-MAG_Hit@5': [41.67, 9.52, 30.95, 26.19, 41.67, 36.90, 28.57, 44.04, 41.67, 36.90, 45.24, 46.43],
'STARK-MAG_R@20': [32.46, 25.00, 27.24, 28.76, 35.95, 32.44, 21.74, 34.57, 39.85, 30.50, 35.95, 35.95],
'STARK-MAG_MRR': [37.42, 7.90, 27.98, 25.53, 35.81, 29.68, 21.59, 38.72, 31.43, 35.97, 42.00, 40.65],
'STARK-PRIME_Hit@1': [22.45, 2.04, 7.14, 6.12, 17.35, 16.33, 9.18, 25.51, 24.49, 15.31, 28.57, 28.57],
'STARK-PRIME_Hit@5': [41.84, 9.18, 13.27, 13.27, 34.69, 32.65, 21.43, 41.84, 39.80, 26.53, 46.94, 44.90],
'STARK-PRIME_R@20': [42.32, 10.69, 11.72, 17.62, 41.09, 39.01, 26.77, 48.10, 47.21, 25.56, 41.61, 41.61],
'STARK-PRIME_MRR': [30.37, 7.05, 10.07, 9.39, 26.35, 24.33, 15.24, 34.28, 32.98, 19.67, 36.32, 34.82]
}
# Initialize DataFrames
df_synthesized_full = pd.DataFrame(data_synthesized_full)
df_synthesized_10 = pd.DataFrame(data_synthesized_10)
df_human_generated = pd.DataFrame(data_human_generated)
# Model type definitions
model_types = {
'Sparse Retriever': ['BM25'],
'Small Dense Retrievers': ['DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)'],
'LLM-based Dense Retrievers': ['ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b'],
'Multivector Retrievers': ['multi-ada-002', 'ColBERTv2'],
'LLM Rerankers': ['Claude3 Reranker', 'GPT4 Reranker']
}
# Submission form validation functions
def validate_email(email_str):
"""Validate email format(s)"""
emails = [e.strip() for e in email_str.split(';')]
email_pattern = re.compile(r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$')
return all(email_pattern.match(email) for email in emails)
def validate_github_url(url):
"""Validate GitHub URL format"""
github_pattern = re.compile(
r'^https?:\/\/(?:www\.)?github\.com\/[\w-]+\/[\w.-]+\/?$'
)
return bool(github_pattern.match(url))
def validate_csv(file_obj):
"""Validate CSV file format and content"""
try:
df = pd.read_csv(file_obj.name)
required_cols = ['query_id', 'pred_rank']
if not all(col in df.columns for col in required_cols):
return False, "CSV must contain 'query_id' and 'pred_rank' columns"
try:
first_rank = eval(df['pred_rank'].iloc[0]) if isinstance(df['pred_rank'].iloc[0], str) else df['pred_rank'].iloc[0]
if not isinstance(first_rank, list) or len(first_rank) < 20:
return False, "pred_rank must be a list with at least 20 candidates"
except:
return False, "Invalid pred_rank format"
return True, "Valid CSV file"
except Exception as e:
return False, f"Error processing CSV: {str(e)}"
def sanitize_name(name):
"""Sanitize name for file system use"""
return re.sub(r'[^a-zA-Z0-9]', '_', name)
def save_submission(submission_data, csv_file):
"""
Save submission data and CSV file using model_name_team_name format
Args:
submission_data (dict): Metadata and results for the submission
csv_file: The uploaded CSV file object
"""
# Create folder name from model name and team name
model_name_clean = sanitize_name(submission_data['Method Name'])
team_name_clean = sanitize_name(submission_data['Team Name'])
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# Create folder name: model_name_team_name
folder_name = f"{model_name_clean}_{team_name_clean}"
submission_id = f"{folder_name}_{timestamp}"
# Create submission directory structure
base_dir = "submissions"
submission_dir = os.path.join(base_dir, folder_name)
os.makedirs(submission_dir, exist_ok=True)
# Save CSV file with timestamp to allow multiple submissions
csv_filename = f"predictions_{timestamp}.csv"
csv_path = os.path.join(submission_dir, csv_filename)
if hasattr(csv_file, 'name'):
with open(csv_file.name, 'rb') as source, open(csv_path, 'wb') as target:
target.write(source.read())
# Add file paths to submission data
submission_data.update({
"csv_path": csv_path,
"submission_id": submission_id,
"folder_name": folder_name
})
# Save metadata as JSON with timestamp
metadata_path = os.path.join(submission_dir, f"metadata_{timestamp}.json")
with open(metadata_path, 'w') as f:
json.dump(submission_data, f, indent=4)
# Update latest.json to track most recent submission
latest_path = os.path.join(submission_dir, "latest.json")
with open(latest_path, 'w') as f:
json.dump({
"latest_submission": timestamp,
"status": "pending_review",
"method_name": submission_data['Method Name']
}, f, indent=4)
return submission_id
def update_leaderboard_data(submission_data):
"""
Update leaderboard data with new submission results
Only uses model name in the displayed table
"""
global df_synthesized_full, df_synthesized_10, df_human_generated
# Determine which DataFrame to update based on split
split_to_df = {
'test': df_synthesized_full,
'test-0.1': df_synthesized_10,
'human_generated_eval': df_human_generated
}
df_to_update = split_to_df[submission_data['Split']]
# Prepare new row data
new_row = {
'Method': submission_data['Method Name'], # Only use method name in table
f'STARK-{submission_data["Dataset"].upper()}_Hit@1': submission_data['results']['hit@1'],
f'STARK-{submission_data["Dataset"].upper()}_Hit@5': submission_data['results']['hit@5'],
f'STARK-{submission_data["Dataset"].upper()}_R@20': submission_data['results']['recall@20'],
f'STARK-{submission_data["Dataset"].upper()}_MRR': submission_data['results']['mrr']
}
# Check if method already exists
method_mask = df_to_update['Method'] == submission_data['Method Name']
if method_mask.any():
# Update existing row
for col in new_row:
df_to_update.loc[method_mask, col] = new_row[col]
else:
# Add new row
df_to_update.loc[len(df_to_update)] = new_row
# Function to get emails from meta_data
def get_emails_from_metadata(meta_data):
"""
Extracts emails from the meta_data dictionary.
Args:
meta_data (dict): The metadata dictionary that contains the 'Contact Email(s)' field.
Returns:
list: A list of email addresses.
"""
return [email.strip() for email in meta_data.get("Contact Email(s)", "").split(";")]
# Function to format meta_data as an HTML table (without Prediction CSV)
def format_metadata_as_table(meta_data):
"""
Formats metadata dictionary into an HTML table for the email.
Handles multiple contact emails separated by a semicolon.
Args:
meta_data (dict): Dictionary containing submission metadata.
Returns:
str: HTML string representing the metadata table.
"""
table_rows = ""
for key, value in meta_data.items():
if key == "Contact Email(s)":
# Ensure that contact emails are split by semicolon
emails = value.split(';')
formatted_emails = "; ".join([email.strip() for email in emails])
table_rows += f"<tr><td><b>{key}</b></td><td>{formatted_emails}</td></tr>"
elif key != "Prediction CSV": # Exclude the Prediction CSV field
table_rows += f"<tr><td><b>{key}</b></td><td>{value}</td></tr>"
table_html = f"""
<table border="1" cellpadding="5" cellspacing="0">
{table_rows}
</table>
"""
return table_html
# Function to get emails from meta_data
def get_emails_from_metadata(meta_data):
"""
Extracts emails from the meta_data dictionary.
Args:
meta_data (dict): The metadata dictionary that contains the 'Contact Email(s)' field.
Returns:
list: A list of email addresses.
"""
return [email.strip() for email in meta_data.get("Contact Email(s)", "").split(";")]
def send_error_notification(meta_data, error_info):
"""
Sends an email notification about an error during the evaluation process.
Args:
meta_data (dict): Submission metadata to be included in the email.
error_info (str): Error message or notification content to be included in the email.
Returns:
None
"""
emails_to_send = get_emails_from_metadata(meta_data)
send_from = 'stark-qa@cs.stanford.edu'
recipients_str = ', '.join(emails_to_send)
# Create the email container
msg = MIMEMultipart('alternative')
msg['Subject'] = 'STaRK Leaderboard Submission - Error Notification'
msg['From'] = send_from
msg['To'] = recipients_str
# Format the metadata table
metadata_table = format_metadata_as_table(meta_data)
# Email body content with metadata table
body = f"""
<p>Dear STaRK Leaderboard Participant,</p>
<p>We encountered an issue during the evaluation of your recent submission:</p>
<p><i>{error_info}</i></p>
<p>Please verify your inputs and resubmit. If the issue persists, feel free to contact us at stark-qa@cs.stanford.edu with the error details and your dataset information.</p>
<p>Submitted Metadata:</p>
{metadata_table}
<p>Thank you for your participation.</p>
<p>Best regards,<br>The STaRK QA Team</p>
"""
msg.attach(MIMEText(body, 'html'))
# Send the email
try:
with smtplib.SMTP('localhost') as server:
server.sendmail(send_from, emails_to_send, msg.as_string()) # No CC for error notification
print("Error notification sent successfully.")
except Exception as e:
print(f"Failed to send error notification: {e}")
def format_evaluation_results(results):
"""
Formats the evaluation results dictionary into a readable string.
Args:
results (dict): Dictionary containing evaluation metrics and their values.
Returns:
str: Formatted string of evaluation results.
"""
result_lines = [f"{metric}: {value}" for metric, value in results.items()]
return "\n".join(result_lines)
# Function to send a submission confirmation with evaluation results and metadata, CCing the sender
def send_submission_confirmation(meta_data, eval_results):
"""
Sends an email notification confirming submission and including evaluation results and metadata,
with an option to CC the sender.
Args:
meta_data (dict): Submission metadata to be included in the email.
eval_results (dict): Dictionary of evaluation results to include in the email.
Returns:
None
"""
emails_to_send = get_emails_from_metadata(meta_data)
send_from = 'stark-qa@cs.stanford.edu'
recipients_str = ', '.join(emails_to_send)
# Create the email container
msg = MIMEMultipart('alternative')
msg['Subject'] = 'STaRK Leaderboard Submission - Evaluation Results'
msg['From'] = send_from
msg['To'] = recipients_str
msg['Cc'] = send_from # CC the sender only for success notification
# Format the evaluation results and metadata table
formatted_results = format_evaluation_results(eval_results)
metadata_table = format_metadata_as_table(meta_data)
# Email body content with evaluation results and metadata table
body = f"""
<p>Dear STaRK Leaderboard Participant,</p>
<p>Thank you for your submission to the STaRK leaderboard. We are pleased to inform you that the evaluation has been completed. Below are the results of your submission:</p>
<pre>{formatted_results}</pre>
<p>Submitted Metadata:</p>
{metadata_table}
<p>Your submission will be reviewed. Once approved, the results will be updated on the leaderboard within the next 48 business hours. If there are problems in the metadata that you submitted, one of our team members will reach out to you.</p>
<p>If you would like to withdraw your submission, simply reply to this email with "withdrawn."</p>
<p>We appreciate your participation and look forward to sharing your results on our leaderboard.</p>
<p>Best regards,<br>The STaRK QA Team</p>
"""
msg.attach(MIMEText(body, 'html'))
# Send the email
try:
with smtplib.SMTP('localhost') as server:
server.sendmail(send_from, emails_to_send + [send_from], msg.as_string()) # Include sender in recipients for CC
print("Submission confirmation sent successfully.")
except Exception as e:
print(f"Failed to send submission confirmation: {e}")
def process_submission(
method_name, team_name, dataset, split, contact_email,
code_repo, csv_file, model_description, hardware, paper_link
):
"""Process and validate submission"""
temp_files = []
try:
# Input validation
if not all([method_name, team_name, dataset, split, contact_email, code_repo, csv_file]):
return "Error: Please fill in all required fields"
# Length validation
if len(method_name) > 25:
return "Error: Method name must be 25 characters or less"
if len(team_name) > 25:
return "Error: Team name must be 25 characters or less"
if not validate_email(contact_email):
return "Error: Invalid email format"
if not validate_github_url(code_repo):
return "Error: Invalid GitHub repository URL"
# Create metadata at the beginning to ensure it's available for error handling
meta_data = {
"Method Name": method_name,
"Team Name": team_name,
"Dataset": dataset,
"Split": split,
"Contact Email(s)": contact_email,
"Code Repository": code_repo,
"Model Description": model_description,
"Hardware": hardware,
"(Optional) Paper link": paper_link
}
# Save and process files
REPO_ID = "snap-stanford/stark-leaderboard" # Replace with your space name
HF_TOKEN = os.getenv("HF_TOKEN")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
folder_name = f"{sanitize_name(method_name)}_{sanitize_name(team_name)}"
temp_csv_path = None
if isinstance(csv_file, str):
# If it's already a file path, use it directly
temp_csv_path = csv_file
else:
# Create a temporary file with a .csv extension
temp_fd, temp_csv_path = tempfile.mkstemp(suffix='.csv')
temp_files.append(temp_csv_path)
os.close(temp_fd)
# Write the content to the temporary file
if hasattr(csv_file, 'name'):
# If it's a file object with a name attribute
shutil.copy2(csv_file.name, temp_csv_path)
else:
# If it's a file-like object
with open(temp_csv_path, 'wb') as temp_file:
if hasattr(csv_file, 'seek'):
csv_file.seek(0)
if hasattr(csv_file, 'read'):
shutil.copyfileobj(csv_file, temp_file)
else:
temp_file.write(csv_file)
# Verify the CSV file exists and is readable
if not os.path.exists(temp_csv_path):
raise FileNotFoundError(f"Failed to create temporary CSV file at {temp_csv_path}")
# Process evaluation
# Use the temporary file path for evaluation
results = compute_metrics(
csv_path=temp_csv_path, # Use the temporary file path
dataset=dataset.lower(),
split=split,
num_workers=4
)
if isinstance(results, str):
send_error_notification(meta_data, results)
return f"Evaluation error: {results}"
csv_filename = f"predictions_{timestamp}.csv"
csv_path_in_repo = f"submissions/{folder_name}/{csv_filename}"
try:
hub_storage.save_to_hub(
file_content=temp_csv_path,
path_in_repo=csv_path_in_repo,
commit_message=f"Add submission: {method_name} by {team_name}"
)
except Exception as e:
raise RuntimeError(f"Failed to save CSV to HuggingFace Hub: {str(e)}")
# Process results (multiply by 100)
processed_results = {
"hit@1": round(results['hit@1'] * 100, 2),
"hit@5": round(results['hit@5'] * 100, 2),
"recall@20": round(results['recall@20'] * 100, 2),
"mrr": round(results['mrr'] * 100, 2)
}
# Save metadata
submission_data = {
**meta_data,
"results": processed_results,
"status": "pending_review",
"submission_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"csv_path": csv_path_in_repo
}
metadata_fd, temp_metadata_path = tempfile.mkstemp(suffix='.json')
temp_files.append(temp_metadata_path)
os.close(metadata_fd)
with open(temp_metadata_path, 'w') as f:
json.dump(submission_data, f, indent=4)
metadata_path = f"submissions/{folder_name}/metadata_{timestamp}.json"
try:
hub_storage.save_to_hub(
file_content=temp_metadata_path,
path_in_repo=metadata_path,
commit_message=f"Add metadata: {method_name} by {team_name}"
)
except Exception as e:
raise RuntimeError(f"Failed to save metadata to HuggingFace Hub: {str(e)}")
# Send confirmation email and update leaderboard
send_submission_confirmation(meta_data, processed_results)
update_leaderboard_data(submission_data)
return f"""
Submission successful!
Evaluation Results:
Hit@1: {processed_results['hit@1']:.2f}%
Hit@5: {processed_results['hit@5']:.2f}%
Recall@20: {processed_results['recall@20']:.2f}%
MRR: {processed_results['mrr']:.2f}%
Your submission has been saved and a confirmation email has been sent to {contact_email}.
Once approved, your results will appear in the leaderboard under: {method_name}
You can find your submission at:
https://huggingface.co/spaces/{REPO_ID}/tree/main/submissions/{folder_name}
"""
except Exception as e:
error_message = f"Error processing submission: {str(e)}"
# meta_data will always be defined here since we create it at the beginning
send_error_notification(meta_data, error_message)
return error_message
finally:
# Clean up temporary files
for temp_file in temp_files:
try:
if os.path.exists(temp_file):
os.unlink(temp_file)
except Exception as e:
print(f"Warning: Failed to delete temporary file {temp_file}: {str(e)}")
def filter_by_model_type(df, selected_types):
if not selected_types:
return df.head(0)
selected_models = [model for type in selected_types for model in model_types[type]]
return df[df['Method'].isin(selected_models)]
def format_dataframe(df, dataset):
columns = ['Method'] + [col for col in df.columns if dataset in col]
filtered_df = df[columns].copy()
filtered_df.columns = [col.split('_')[-1] if '_' in col else col for col in filtered_df.columns]
filtered_df = filtered_df.sort_values('MRR', ascending=False)
return filtered_df
def update_tables(selected_types):
filtered_df_full = filter_by_model_type(df_synthesized_full, selected_types)
filtered_df_10 = filter_by_model_type(df_synthesized_10, selected_types)
filtered_df_human = filter_by_model_type(df_human_generated, selected_types)
outputs = []
for df in [filtered_df_full, filtered_df_10, filtered_df_human]:
for dataset in ['AMAZON', 'MAG', 'PRIME']:
outputs.append(format_dataframe(df, f"STARK-{dataset}"))
return outputs
css = """
table > thead {
white-space: normal
}
table {
--cell-width-1: 250px
}
table > tbody > tr > td:nth-child(2) > div {
overflow-x: auto
}
.tab-nav {
border-bottom: 1px solid rgba(255, 255, 255, 0.1);
margin-bottom: 1rem;
}
"""
# Main application
with gr.Blocks(css=css) as demo:
gr.Markdown("# Semi-structured Retrieval Benchmark (STaRK) Leaderboard")
gr.Markdown("Refer to the [STaRK paper](https://arxiv.org/pdf/2404.13207) for details on metrics, tasks and models.")
# Model type filter
model_type_filter = gr.CheckboxGroup(
choices=list(model_types.keys()),
value=list(model_types.keys()),
label="Model types",
interactive=True
)
# Initialize dataframes list
all_dfs = []
# Create nested tabs structure
with gr.Tabs() as outer_tabs:
with gr.TabItem("Synthesized (full)"):
with gr.Tabs() as inner_tabs1:
for dataset in ['AMAZON', 'MAG', 'PRIME']:
with gr.TabItem(dataset):
all_dfs.append(gr.DataFrame(interactive=False))
with gr.TabItem("Synthesized (10%)"):
with gr.Tabs() as inner_tabs2:
for dataset in ['AMAZON', 'MAG', 'PRIME']:
with gr.TabItem(dataset):
all_dfs.append(gr.DataFrame(interactive=False))
with gr.TabItem("Human-Generated"):
with gr.Tabs() as inner_tabs3:
for dataset in ['AMAZON', 'MAG', 'PRIME']:
with gr.TabItem(dataset):
all_dfs.append(gr.DataFrame(interactive=False))
# Submission section
gr.Markdown("---")
gr.Markdown("## Submit Your Results")
gr.Markdown("""
Submit your results to be included in the leaderboard. Please ensure your submission meets all requirements.
For questions, contact stark-qa@cs.stanford.edu
""")
with gr.Row():
with gr.Column():
method_name = gr.Textbox(
label="Method Name (max 25 chars)*",
placeholder="e.g., MyRetrievalModel-v1"
)
team_name = gr.Textbox(
label="Team Name (max 25 chars)*",
placeholder="e.g., Stanford NLP"
)
dataset = gr.Dropdown(
choices=["amazon", "mag", "prime"],
label="Dataset*",
value="amazon"
)
split = gr.Dropdown(
choices=["test", "test-0.1", "human_generated_eval"],
label="Split*",
value="test"
)
contact_email = gr.Textbox(
label="Contact Email(s)*",
placeholder="email@example.com; another@example.com"
)
with gr.Column():
code_repo = gr.Textbox(
label="Code Repository*",
placeholder="https://github.com/snap-stanford/stark-leaderboard"
)
csv_file = gr.File(
label="Prediction CSV*",
file_types=[".csv"],
type="filepath" # Important: specify type as filepath
)
model_description = gr.Textbox(
label="Model Description*",
lines=3,
placeholder="Briefly describe how your retriever model works..."
)
hardware = gr.Textbox(
label="Hardware Specifications*",
placeholder="e.g., 4x NVIDIA A100 80GB"
)
paper_link = gr.Textbox(
label="Paper Link (Optional)",
placeholder="https://arxiv.org/abs/..."
)
submit_btn = gr.Button("Submit", variant="primary")
result = gr.Textbox(label="Submission Status", interactive=False)
# Set up event handlers
model_type_filter.change(
update_tables,
inputs=[model_type_filter],
outputs=all_dfs
)
submit_btn.click(
process_submission,
inputs=[
method_name, team_name, dataset, split, contact_email,
code_repo, csv_file, model_description, hardware, paper_link
],
outputs=result
)
# Initial table update
demo.load(
update_tables,
inputs=[model_type_filter],
outputs=all_dfs
)
# Launch the application
demo.launch()