Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
import os | |
import re | |
from datetime import datetime | |
import json | |
import torch | |
from tqdm import tqdm | |
from concurrent.futures import ProcessPoolExecutor, as_completed | |
from stark_qa import load_qa | |
from stark_qa.evaluator import Evaluator | |
def process_single_instance(args): | |
idx, eval_csv, qa_dataset, evaluator, eval_metrics = args | |
query, query_id, answer_ids, meta_info = qa_dataset[idx] | |
try: | |
pred_rank = eval_csv[eval_csv['query_id'] == query_id]['pred_rank'].item() | |
except IndexError: | |
raise IndexError(f'Error when processing query_id={query_id}, please make sure the predicted results exist for this query.') | |
except Exception as e: | |
raise RuntimeError(f'Unexpected error occurred while fetching prediction rank for query_id={query_id}: {e}') | |
if isinstance(pred_rank, str): | |
try: | |
pred_rank = eval(pred_rank) | |
except SyntaxError as e: | |
raise ValueError(f'Failed to parse pred_rank as a list for query_id={query_id}: {e}') | |
if not isinstance(pred_rank, list): | |
raise TypeError(f'Error when processing query_id={query_id}, expected pred_rank to be a list but got {type(pred_rank)}.') | |
pred_dict = {pred_rank[i]: -i for i in range(min(100, len(pred_rank)))} | |
answer_ids = torch.LongTensor(answer_ids) | |
result = evaluator.evaluate(pred_dict, answer_ids, metrics=eval_metrics) | |
result["idx"], result["query_id"] = idx, query_id | |
return result | |
def compute_metrics(csv_path: str, dataset: str, split: str, num_workers: int = 4): | |
candidate_ids_dict = { | |
'amazon': [i for i in range(957192)], | |
'mag': [i for i in range(1172724, 1872968)], | |
'prime': [i for i in range(129375)] | |
} | |
try: | |
eval_csv = pd.read_csv(csv_path) | |
if 'query_id' not in eval_csv.columns: | |
raise ValueError('No `query_id` column found in the submitted csv.') | |
if 'pred_rank' not in eval_csv.columns: | |
raise ValueError('No `pred_rank` column found in the submitted csv.') | |
eval_csv = eval_csv[['query_id', 'pred_rank']] | |
if dataset not in candidate_ids_dict: | |
raise ValueError(f"Invalid dataset '{dataset}', expected one of {list(candidate_ids_dict.keys())}.") | |
if split not in ['test', 'test-0.1', 'human_generated_eval']: | |
raise ValueError(f"Invalid split '{split}', expected one of ['test', 'test-0.1', 'human_generated_eval'].") | |
evaluator = Evaluator(candidate_ids_dict[dataset]) | |
eval_metrics = ['hit@1', 'hit@5', 'recall@20', 'mrr'] | |
qa_dataset = load_qa(dataset, human_generated_eval=split == 'human_generated_eval') | |
split_idx = qa_dataset.get_idx_split() | |
all_indices = split_idx[split].tolist() | |
results_list = [] | |
query_ids = [] | |
# Prepare args for each worker | |
args = [(idx, eval_csv, qa_dataset, evaluator, eval_metrics) for idx in all_indices] | |
with ProcessPoolExecutor(max_workers=num_workers) as executor: | |
futures = [executor.submit(process_single_instance, arg) for arg in args] | |
for future in tqdm(as_completed(futures), total=len(futures)): | |
result = future.result() # This will raise an error if the worker encountered one | |
results_list.append(result) | |
query_ids.append(result['query_id']) | |
# Concatenate results and compute final metrics | |
eval_csv = pd.concat([eval_csv, pd.DataFrame(results_list)], ignore_index=True) | |
final_results = { | |
metric: np.mean(eval_csv[eval_csv['query_id'].isin(query_ids)][metric]) for metric in eval_metrics | |
} | |
return final_results | |
except pd.errors.EmptyDataError: | |
return "Error: The CSV file is empty or could not be read. Please check the file and try again." | |
except FileNotFoundError: | |
return f"Error: The file {csv_path} could not be found. Please check the file path and try again." | |
except Exception as error: | |
return f"{error}" | |
# Data dictionaries for leaderboard | |
data_synthesized_full = { | |
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2'], | |
'STARK-AMAZON_Hit@1': [44.94, 15.29, 30.96, 26.56, 39.16, 40.93, 21.74, 42.08, 40.07, 46.10], | |
'STARK-AMAZON_Hit@5': [67.42, 47.93, 51.06, 50.01, 62.73, 64.37, 41.65, 66.87, 64.98, 66.02], | |
'STARK-AMAZON_R@20': [53.77, 44.49, 41.95, 52.05, 53.29, 54.28, 33.22, 56.52, 55.12, 53.44], | |
'STARK-AMAZON_MRR': [55.30, 30.20, 40.66, 37.75, 50.35, 51.60, 31.47, 53.46, 51.55, 55.51], | |
'STARK-MAG_Hit@1': [25.85, 10.51, 21.96, 12.88, 29.08, 30.06, 18.01, 37.90, 25.92, 31.18], | |
'STARK-MAG_Hit@5': [45.25, 35.23, 36.50, 39.01, 49.61, 50.58, 34.85, 56.74, 50.43, 46.42], | |
'STARK-MAG_R@20': [45.69, 42.11, 35.32, 46.97, 48.36, 50.49, 35.46, 46.40, 50.80, 43.94], | |
'STARK-MAG_MRR': [34.91, 21.34, 29.14, 29.12, 38.62, 39.66, 26.10, 47.25, 36.94, 38.39], | |
'STARK-PRIME_Hit@1': [12.75, 4.46, 6.53, 8.85, 12.63, 10.85, 10.10, 15.57, 15.10, 11.75], | |
'STARK-PRIME_Hit@5': [27.92, 21.85, 15.67, 21.35, 31.49, 30.23, 22.49, 33.42, 33.56, 23.85], | |
'STARK-PRIME_R@20': [31.25, 30.13, 16.52, 29.63, 36.00, 37.83, 26.34, 39.09, 38.05, 25.04], | |
'STARK-PRIME_MRR': [19.84, 12.38, 11.05, 14.73, 21.41, 19.99, 16.12, 24.11, 23.49, 17.39] | |
} | |
data_synthesized_10 = { | |
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'], | |
'STARK-AMAZON_Hit@1': [42.68, 16.46, 30.09, 25.00, 39.02, 43.29, 18.90, 43.29, 40.85, 44.31, 45.49, 44.79], | |
'STARK-AMAZON_Hit@5': [67.07, 50.00, 49.27, 48.17, 64.02, 67.68, 37.80, 71.34, 62.80, 65.24, 71.13, 71.17], | |
'STARK-AMAZON_R@20': [54.48, 42.15, 41.91, 51.65, 49.30, 56.04, 34.73, 56.14, 52.47, 51.00, 53.77, 55.35], | |
'STARK-AMAZON_MRR': [54.02, 30.20, 39.30, 36.87, 50.32, 54.20, 28.76, 55.07, 51.54, 55.07, 55.91, 55.69], | |
'STARK-MAG_Hit@1': [27.81, 11.65, 22.89, 12.03, 28.20, 34.59, 19.17, 38.35, 25.56, 31.58, 36.54, 40.90], | |
'STARK-MAG_Hit@5': [45.48, 36.84, 37.26, 37.97, 52.63, 50.75, 33.46, 58.64, 50.37, 47.36, 53.17, 58.18], | |
'STARK-MAG_R@20': [44.59, 42.30, 44.16, 47.98, 49.25, 50.75, 29.85, 46.38, 53.03, 45.72, 48.36, 48.60], | |
'STARK-MAG_MRR': [35.97, 21.82, 30.00, 28.70, 38.55, 42.90, 26.06, 48.25, 36.82, 38.98, 44.15, 49.00], | |
'STARK-PRIME_Hit@1': [13.93, 5.00, 6.78, 7.14, 15.36, 12.14, 9.29, 16.79, 15.36, 15.00, 17.79, 18.28], | |
'STARK-PRIME_Hit@5': [31.07, 23.57, 16.15, 17.14, 31.07, 31.42, 20.7, 34.29, 32.86, 26.07, 36.90, 37.28], | |
'STARK-PRIME_R@20': [32.84, 30.50, 17.07, 32.95, 37.88, 37.34, 25.54, 41.11, 40.99, 27.78, 35.57, 34.05], | |
'STARK-PRIME_MRR': [21.68, 13.50, 11.42, 16.27, 23.50, 21.23, 15.00, 24.99, 23.70, 19.98, 26.27, 26.55] | |
} | |
data_human_generated = { | |
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'], | |
'STARK-AMAZON_Hit@1': [27.16, 16.05, 25.93, 22.22, 39.50, 35.80, 29.63, 40.74, 46.91, 33.33, 53.09, 50.62], | |
'STARK-AMAZON_Hit@5': [51.85, 39.51, 54.32, 49.38, 64.19, 62.96, 46.91, 71.60, 72.84, 55.56, 74.07, 75.31], | |
'STARK-AMAZON_R@20': [29.23, 15.23, 23.69, 21.54, 35.46, 33.01, 21.21, 36.30, 40.22, 29.03, 35.46, 35.46], | |
'STARK-AMAZON_MRR': [18.79, 27.21, 37.12, 31.33, 52.65, 47.84, 38.61, 53.21, 58.74, 43.77, 62.11, 61.06], | |
'STARK-MAG_Hit@1': [32.14, 4.72, 25.00, 20.24, 28.57, 22.62, 16.67, 34.52, 23.81, 33.33, 38.10, 36.90], | |
'STARK-MAG_Hit@5': [41.67, 9.52, 30.95, 26.19, 41.67, 36.90, 28.57, 44.04, 41.67, 36.90, 45.24, 46.43], | |
'STARK-MAG_R@20': [32.46, 25.00, 27.24, 28.76, 35.95, 32.44, 21.74, 34.57, 39.85, 30.50, 35.95, 35.95], | |
'STARK-MAG_MRR': [37.42, 7.90, 27.98, 25.53, 35.81, 29.68, 21.59, 38.72, 31.43, 35.97, 42.00, 40.65], | |
'STARK-PRIME_Hit@1': [22.45, 2.04, 7.14, 6.12, 17.35, 16.33, 9.18, 25.51, 24.49, 15.31, 28.57, 28.57], | |
'STARK-PRIME_Hit@5': [41.84, 9.18, 13.27, 13.27, 34.69, 32.65, 21.43, 41.84, 39.80, 26.53, 46.94, 44.90], | |
'STARK-PRIME_R@20': [42.32, 10.69, 11.72, 17.62, 41.09, 39.01, 26.77, 48.10, 47.21, 25.56, 41.61, 41.61], | |
'STARK-PRIME_MRR': [30.37, 7.05, 10.07, 9.39, 26.35, 24.33, 15.24, 34.28, 32.98, 19.67, 36.32, 34.82] | |
} | |
# Initialize DataFrames | |
df_synthesized_full = pd.DataFrame(data_synthesized_full) | |
df_synthesized_10 = pd.DataFrame(data_synthesized_10) | |
df_human_generated = pd.DataFrame(data_human_generated) | |
# Model type definitions | |
model_types = { | |
'Sparse Retriever': ['BM25'], | |
'Small Dense Retrievers': ['DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)'], | |
'LLM-based Dense Retrievers': ['ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b'], | |
'Multivector Retrievers': ['multi-ada-002', 'ColBERTv2'], | |
'LLM Rerankers': ['Claude3 Reranker', 'GPT4 Reranker'] | |
} | |
# Submission form validation functions | |
def validate_email(email_str): | |
"""Validate email format(s)""" | |
emails = [e.strip() for e in email_str.split(';')] | |
email_pattern = re.compile(r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$') | |
return all(email_pattern.match(email) for email in emails) | |
def validate_github_url(url): | |
"""Validate GitHub URL format""" | |
github_pattern = re.compile( | |
r'^https?:\/\/(?:www\.)?github\.com\/[\w-]+\/[\w.-]+\/?$' | |
) | |
return bool(github_pattern.match(url)) | |
def validate_csv(file_obj): | |
"""Validate CSV file format and content""" | |
try: | |
df = pd.read_csv(file_obj.name) | |
required_cols = ['query_id', 'pred_rank'] | |
if not all(col in df.columns for col in required_cols): | |
return False, "CSV must contain 'query_id' and 'pred_rank' columns" | |
try: | |
first_rank = eval(df['pred_rank'].iloc[0]) if isinstance(df['pred_rank'].iloc[0], str) else df['pred_rank'].iloc[0] | |
if not isinstance(first_rank, list) or len(first_rank) < 20: | |
return False, "pred_rank must be a list with at least 20 candidates" | |
except: | |
return False, "Invalid pred_rank format" | |
return True, "Valid CSV file" | |
except Exception as e: | |
return False, f"Error processing CSV: {str(e)}" | |
def sanitize_name(name): | |
"""Sanitize name for file system use""" | |
return re.sub(r'[^a-zA-Z0-9]', '_', name) | |
def save_submission(submission_data, csv_file): | |
""" | |
Save submission data and CSV file using model_name_team_name format | |
Args: | |
submission_data (dict): Metadata and results for the submission | |
csv_file: The uploaded CSV file object | |
""" | |
# Create folder name from model name and team name | |
model_name_clean = sanitize_name(submission_data['method_name']) | |
team_name_clean = sanitize_name(submission_data['team_name']) | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
# Create folder name: model_name_team_name | |
folder_name = f"{model_name_clean}_{team_name_clean}" | |
submission_id = f"{folder_name}_{timestamp}" | |
# Create submission directory structure | |
base_dir = "submissions" | |
submission_dir = os.path.join(base_dir, folder_name) | |
os.makedirs(submission_dir, exist_ok=True) | |
# Save CSV file with timestamp to allow multiple submissions | |
csv_filename = f"predictions_{timestamp}.csv" | |
csv_path = os.path.join(submission_dir, csv_filename) | |
if hasattr(csv_file, 'name'): | |
with open(csv_file.name, 'rb') as source, open(csv_path, 'wb') as target: | |
target.write(source.read()) | |
# Add file paths to submission data | |
submission_data.update({ | |
"csv_path": csv_path, | |
"submission_id": submission_id, | |
"folder_name": folder_name | |
}) | |
# Save metadata as JSON with timestamp | |
metadata_path = os.path.join(submission_dir, f"metadata_{timestamp}.json") | |
with open(metadata_path, 'w') as f: | |
json.dump(submission_data, f, indent=4) | |
# Update latest.json to track most recent submission | |
latest_path = os.path.join(submission_dir, "latest.json") | |
with open(latest_path, 'w') as f: | |
json.dump({ | |
"latest_submission": timestamp, | |
"status": "pending_review", | |
"method_name": submission_data['method_name'] | |
}, f, indent=4) | |
return submission_id | |
def update_leaderboard_data(submission_data): | |
""" | |
Update leaderboard data with new submission results | |
Only uses model name in the displayed table | |
""" | |
global df_synthesized_full, df_synthesized_10, df_human_generated | |
# Determine which DataFrame to update based on split | |
split_to_df = { | |
'test': df_synthesized_full, | |
'test-0.1': df_synthesized_10, | |
'human_generated_eval': df_human_generated | |
} | |
df_to_update = split_to_df[submission_data['split']] | |
# Prepare new row data | |
new_row = { | |
'Method': submission_data['method_name'], # Only use method name in table | |
f'STARK-{submission_data["dataset"].upper()}_Hit@1': submission_data['results']['hit@1'], | |
f'STARK-{submission_data["dataset"].upper()}_Hit@5': submission_data['results']['hit@5'], | |
f'STARK-{submission_data["dataset"].upper()}_R@20': submission_data['results']['recall@20'], | |
f'STARK-{submission_data["dataset"].upper()}_MRR': submission_data['results']['mrr'] | |
} | |
# Check if method already exists | |
method_mask = df_to_update['Method'] == submission_data['method_name'] | |
if method_mask.any(): | |
# Update existing row | |
for col in new_row: | |
df_to_update.loc[method_mask, col] = new_row[col] | |
else: | |
# Add new row | |
df_to_update.loc[len(df_to_update)] = new_row | |
def process_submission( | |
method_name, team_name, dataset, split, contact_email, | |
code_repo, csv_file, model_description, hardware, paper_link | |
): | |
"""Process and validate submission""" | |
try: | |
# [Previous validation code remains the same] | |
# Process CSV file through evaluation pipeline | |
results = compute_metrics( | |
csv_file.name, | |
dataset=dataset.lower(), | |
split=split, | |
num_workers=4 | |
) | |
if isinstance(results, str) and results.startswith("Error"): | |
return f"Evaluation error: {results}" | |
# Prepare submission data | |
submission_data = { | |
"method_name": method_name, | |
"team_name": team_name, | |
"dataset": dataset, | |
"split": split, | |
"contact_email": contact_email, | |
"code_repo": code_repo, | |
"model_description": model_description, | |
"hardware": hardware, | |
"paper_link": paper_link, | |
"results": results, | |
"status": "pending_review", | |
"submission_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
} | |
# Save submission and get ID | |
submission_id = save_submission(submission_data, csv_file) | |
# Update leaderboard data if submission is valid | |
update_leaderboard_data(submission_data) | |
return f""" | |
Submission successful! Your submission ID is: {submission_id} | |
Evaluation Results: | |
Hit@1: {results['hit@1']:.2f} | |
Hit@5: {results['hit@5']:.2f} | |
Recall@20: {results['recall@20']:.2f} | |
MRR: {results['mrr']:.2f} | |
Your submission has been saved and is pending review. | |
Once approved, your results will appear in the leaderboard under the method name: {method_name} | |
""" | |
except Exception as e: | |
return f"Error processing submission: {str(e)}" | |
def filter_by_model_type(df, selected_types): | |
if not selected_types: | |
return df.head(0) | |
selected_models = [model for type in selected_types for model in model_types[type]] | |
return df[df['Method'].isin(selected_models)] | |
def format_dataframe(df, dataset): | |
columns = ['Method'] + [col for col in df.columns if dataset in col] | |
filtered_df = df[columns].copy() | |
filtered_df.columns = [col.split('_')[-1] if '_' in col else col for col in filtered_df.columns] | |
filtered_df = filtered_df.sort_values('MRR', ascending=False) | |
return filtered_df | |
def update_tables(selected_types): | |
filtered_df_full = filter_by_model_type(df_synthesized_full, selected_types) | |
filtered_df_10 = filter_by_model_type(df_synthesized_10, selected_types) | |
filtered_df_human = filter_by_model_type(df_human_generated, selected_types) | |
outputs = [] | |
for df in [filtered_df_full, filtered_df_10, filtered_df_human]: | |
for dataset in ['AMAZON', 'MAG', 'PRIME']: | |
outputs.append(format_dataframe(df, f"STARK-{dataset}")) | |
return outputs | |
css = """ | |
table > thead { | |
white-space: normal | |
} | |
table { | |
--cell-width-1: 250px | |
} | |
table > tbody > tr > td:nth-child(2) > div { | |
overflow-x: auto | |
} | |
.tab-nav { | |
border-bottom: 1px solid rgba(255, 255, 255, 0.1); | |
margin-bottom: 1rem; | |
} | |
""" | |
# Main application | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("# Semi-structured Retrieval Benchmark (STaRK) Leaderboard") | |
gr.Markdown("Refer to the [STaRK paper](https://arxiv.org/pdf/2404.13207) for details on metrics, tasks and models.") | |
# Model type filter | |
model_type_filter = gr.CheckboxGroup( | |
choices=list(model_types.keys()), | |
value=list(model_types.keys()), | |
label="Model types", | |
interactive=True | |
) | |
# Initialize dataframes list | |
all_dfs = [] | |
# Create nested tabs structure | |
with gr.Tabs() as outer_tabs: | |
with gr.TabItem("Synthesized (full)"): | |
with gr.Tabs() as inner_tabs1: | |
for dataset in ['AMAZON', 'MAG', 'PRIME']: | |
with gr.TabItem(dataset): | |
all_dfs.append(gr.DataFrame(interactive=False)) | |
with gr.TabItem("Synthesized (10%)"): | |
with gr.Tabs() as inner_tabs2: | |
for dataset in ['AMAZON', 'MAG', 'PRIME']: | |
with gr.TabItem(dataset): | |
all_dfs.append(gr.DataFrame(interactive=False)) | |
with gr.TabItem("Human-Generated"): | |
with gr.Tabs() as inner_tabs3: | |
for dataset in ['AMAZON', 'MAG', 'PRIME']: | |
with gr.TabItem(dataset): | |
all_dfs.append(gr.DataFrame(interactive=False)) | |
# Submission section | |
gr.Markdown("---") | |
gr.Markdown("## Submit Your Results") | |
gr.Markdown(""" | |
Submit your results to be included in the leaderboard. Please ensure your submission meets all requirements. | |
For questions, contact stark-qa@cs.stanford.edu | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
method_name = gr.Textbox( | |
label="Method Name (max 25 chars)*", | |
placeholder="e.g., MyRetrievalModel-v1" | |
) | |
team_name = gr.Textbox( | |
label="Team Name (max 25 chars)*", | |
placeholder="e.g., Stanford NLP" | |
) | |
dataset = gr.Dropdown( | |
choices=["amazon", "mag", "prime"], | |
label="Dataset*", | |
value="amazon" | |
) | |
split = gr.Dropdown( | |
choices=["test", "test-0.1", "human_generated_eval"], | |
label="Split*", | |
value="test" | |
) | |
contact_email = gr.Textbox( | |
label="Contact Email(s)*", | |
placeholder="email@example.com; another@example.com" | |
) | |
with gr.Column(): | |
code_repo = gr.Textbox( | |
label="Code Repository*", | |
placeholder="https://github.com/username/repository" | |
) | |
csv_file = gr.File( | |
label="Prediction CSV*", | |
file_types=[".csv"] | |
) | |
model_description = gr.Textbox( | |
label="Model Description*", | |
lines=3, | |
placeholder="Briefly describe how your retriever model works..." | |
) | |
hardware = gr.Textbox( | |
label="Hardware Specifications*", | |
placeholder="e.g., 4x NVIDIA A100 80GB" | |
) | |
paper_link = gr.Textbox( | |
label="Paper Link (Optional)", | |
placeholder="https://arxiv.org/abs/..." | |
) | |
submit_btn = gr.Button("Submit", variant="primary") | |
result = gr.Textbox(label="Submission Status", interactive=False) | |
# Set up event handlers | |
model_type_filter.change( | |
update_tables, | |
inputs=[model_type_filter], | |
outputs=all_dfs | |
) | |
submit_btn.click( | |
process_submission, | |
inputs=[ | |
method_name, team_name, dataset, split, contact_email, | |
code_repo, csv_file, model_description, hardware, paper_link | |
], | |
outputs=result | |
) | |
# Initial table update | |
demo.load( | |
update_tables, | |
inputs=[model_type_filter], | |
outputs=all_dfs | |
) | |
# Launch the application | |
demo.launch() |