Shiyu Zhao
Update space
c8373c1
raw
history blame
21.4 kB
import gradio as gr
import pandas as pd
import numpy as np
import os
import re
from datetime import datetime
import json
import torch
from tqdm import tqdm
from concurrent.futures import ProcessPoolExecutor, as_completed
from stark_qa import load_qa
from stark_qa.evaluator import Evaluator
def process_single_instance(args):
idx, eval_csv, qa_dataset, evaluator, eval_metrics = args
query, query_id, answer_ids, meta_info = qa_dataset[idx]
try:
pred_rank = eval_csv[eval_csv['query_id'] == query_id]['pred_rank'].item()
except IndexError:
raise IndexError(f'Error when processing query_id={query_id}, please make sure the predicted results exist for this query.')
except Exception as e:
raise RuntimeError(f'Unexpected error occurred while fetching prediction rank for query_id={query_id}: {e}')
if isinstance(pred_rank, str):
try:
pred_rank = eval(pred_rank)
except SyntaxError as e:
raise ValueError(f'Failed to parse pred_rank as a list for query_id={query_id}: {e}')
if not isinstance(pred_rank, list):
raise TypeError(f'Error when processing query_id={query_id}, expected pred_rank to be a list but got {type(pred_rank)}.')
pred_dict = {pred_rank[i]: -i for i in range(min(100, len(pred_rank)))}
answer_ids = torch.LongTensor(answer_ids)
result = evaluator.evaluate(pred_dict, answer_ids, metrics=eval_metrics)
result["idx"], result["query_id"] = idx, query_id
return result
def compute_metrics(csv_path: str, dataset: str, split: str, num_workers: int = 4):
candidate_ids_dict = {
'amazon': [i for i in range(957192)],
'mag': [i for i in range(1172724, 1872968)],
'prime': [i for i in range(129375)]
}
try:
eval_csv = pd.read_csv(csv_path)
if 'query_id' not in eval_csv.columns:
raise ValueError('No `query_id` column found in the submitted csv.')
if 'pred_rank' not in eval_csv.columns:
raise ValueError('No `pred_rank` column found in the submitted csv.')
eval_csv = eval_csv[['query_id', 'pred_rank']]
if dataset not in candidate_ids_dict:
raise ValueError(f"Invalid dataset '{dataset}', expected one of {list(candidate_ids_dict.keys())}.")
if split not in ['test', 'test-0.1', 'human_generated_eval']:
raise ValueError(f"Invalid split '{split}', expected one of ['test', 'test-0.1', 'human_generated_eval'].")
evaluator = Evaluator(candidate_ids_dict[dataset])
eval_metrics = ['hit@1', 'hit@5', 'recall@20', 'mrr']
qa_dataset = load_qa(dataset, human_generated_eval=split == 'human_generated_eval')
split_idx = qa_dataset.get_idx_split()
all_indices = split_idx[split].tolist()
results_list = []
query_ids = []
# Prepare args for each worker
args = [(idx, eval_csv, qa_dataset, evaluator, eval_metrics) for idx in all_indices]
with ProcessPoolExecutor(max_workers=num_workers) as executor:
futures = [executor.submit(process_single_instance, arg) for arg in args]
for future in tqdm(as_completed(futures), total=len(futures)):
result = future.result() # This will raise an error if the worker encountered one
results_list.append(result)
query_ids.append(result['query_id'])
# Concatenate results and compute final metrics
eval_csv = pd.concat([eval_csv, pd.DataFrame(results_list)], ignore_index=True)
final_results = {
metric: np.mean(eval_csv[eval_csv['query_id'].isin(query_ids)][metric]) for metric in eval_metrics
}
return final_results
except pd.errors.EmptyDataError:
return "Error: The CSV file is empty or could not be read. Please check the file and try again."
except FileNotFoundError:
return f"Error: The file {csv_path} could not be found. Please check the file path and try again."
except Exception as error:
return f"{error}"
# Data dictionaries for leaderboard
data_synthesized_full = {
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2'],
'STARK-AMAZON_Hit@1': [44.94, 15.29, 30.96, 26.56, 39.16, 40.93, 21.74, 42.08, 40.07, 46.10],
'STARK-AMAZON_Hit@5': [67.42, 47.93, 51.06, 50.01, 62.73, 64.37, 41.65, 66.87, 64.98, 66.02],
'STARK-AMAZON_R@20': [53.77, 44.49, 41.95, 52.05, 53.29, 54.28, 33.22, 56.52, 55.12, 53.44],
'STARK-AMAZON_MRR': [55.30, 30.20, 40.66, 37.75, 50.35, 51.60, 31.47, 53.46, 51.55, 55.51],
'STARK-MAG_Hit@1': [25.85, 10.51, 21.96, 12.88, 29.08, 30.06, 18.01, 37.90, 25.92, 31.18],
'STARK-MAG_Hit@5': [45.25, 35.23, 36.50, 39.01, 49.61, 50.58, 34.85, 56.74, 50.43, 46.42],
'STARK-MAG_R@20': [45.69, 42.11, 35.32, 46.97, 48.36, 50.49, 35.46, 46.40, 50.80, 43.94],
'STARK-MAG_MRR': [34.91, 21.34, 29.14, 29.12, 38.62, 39.66, 26.10, 47.25, 36.94, 38.39],
'STARK-PRIME_Hit@1': [12.75, 4.46, 6.53, 8.85, 12.63, 10.85, 10.10, 15.57, 15.10, 11.75],
'STARK-PRIME_Hit@5': [27.92, 21.85, 15.67, 21.35, 31.49, 30.23, 22.49, 33.42, 33.56, 23.85],
'STARK-PRIME_R@20': [31.25, 30.13, 16.52, 29.63, 36.00, 37.83, 26.34, 39.09, 38.05, 25.04],
'STARK-PRIME_MRR': [19.84, 12.38, 11.05, 14.73, 21.41, 19.99, 16.12, 24.11, 23.49, 17.39]
}
data_synthesized_10 = {
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'],
'STARK-AMAZON_Hit@1': [42.68, 16.46, 30.09, 25.00, 39.02, 43.29, 18.90, 43.29, 40.85, 44.31, 45.49, 44.79],
'STARK-AMAZON_Hit@5': [67.07, 50.00, 49.27, 48.17, 64.02, 67.68, 37.80, 71.34, 62.80, 65.24, 71.13, 71.17],
'STARK-AMAZON_R@20': [54.48, 42.15, 41.91, 51.65, 49.30, 56.04, 34.73, 56.14, 52.47, 51.00, 53.77, 55.35],
'STARK-AMAZON_MRR': [54.02, 30.20, 39.30, 36.87, 50.32, 54.20, 28.76, 55.07, 51.54, 55.07, 55.91, 55.69],
'STARK-MAG_Hit@1': [27.81, 11.65, 22.89, 12.03, 28.20, 34.59, 19.17, 38.35, 25.56, 31.58, 36.54, 40.90],
'STARK-MAG_Hit@5': [45.48, 36.84, 37.26, 37.97, 52.63, 50.75, 33.46, 58.64, 50.37, 47.36, 53.17, 58.18],
'STARK-MAG_R@20': [44.59, 42.30, 44.16, 47.98, 49.25, 50.75, 29.85, 46.38, 53.03, 45.72, 48.36, 48.60],
'STARK-MAG_MRR': [35.97, 21.82, 30.00, 28.70, 38.55, 42.90, 26.06, 48.25, 36.82, 38.98, 44.15, 49.00],
'STARK-PRIME_Hit@1': [13.93, 5.00, 6.78, 7.14, 15.36, 12.14, 9.29, 16.79, 15.36, 15.00, 17.79, 18.28],
'STARK-PRIME_Hit@5': [31.07, 23.57, 16.15, 17.14, 31.07, 31.42, 20.7, 34.29, 32.86, 26.07, 36.90, 37.28],
'STARK-PRIME_R@20': [32.84, 30.50, 17.07, 32.95, 37.88, 37.34, 25.54, 41.11, 40.99, 27.78, 35.57, 34.05],
'STARK-PRIME_MRR': [21.68, 13.50, 11.42, 16.27, 23.50, 21.23, 15.00, 24.99, 23.70, 19.98, 26.27, 26.55]
}
data_human_generated = {
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'],
'STARK-AMAZON_Hit@1': [27.16, 16.05, 25.93, 22.22, 39.50, 35.80, 29.63, 40.74, 46.91, 33.33, 53.09, 50.62],
'STARK-AMAZON_Hit@5': [51.85, 39.51, 54.32, 49.38, 64.19, 62.96, 46.91, 71.60, 72.84, 55.56, 74.07, 75.31],
'STARK-AMAZON_R@20': [29.23, 15.23, 23.69, 21.54, 35.46, 33.01, 21.21, 36.30, 40.22, 29.03, 35.46, 35.46],
'STARK-AMAZON_MRR': [18.79, 27.21, 37.12, 31.33, 52.65, 47.84, 38.61, 53.21, 58.74, 43.77, 62.11, 61.06],
'STARK-MAG_Hit@1': [32.14, 4.72, 25.00, 20.24, 28.57, 22.62, 16.67, 34.52, 23.81, 33.33, 38.10, 36.90],
'STARK-MAG_Hit@5': [41.67, 9.52, 30.95, 26.19, 41.67, 36.90, 28.57, 44.04, 41.67, 36.90, 45.24, 46.43],
'STARK-MAG_R@20': [32.46, 25.00, 27.24, 28.76, 35.95, 32.44, 21.74, 34.57, 39.85, 30.50, 35.95, 35.95],
'STARK-MAG_MRR': [37.42, 7.90, 27.98, 25.53, 35.81, 29.68, 21.59, 38.72, 31.43, 35.97, 42.00, 40.65],
'STARK-PRIME_Hit@1': [22.45, 2.04, 7.14, 6.12, 17.35, 16.33, 9.18, 25.51, 24.49, 15.31, 28.57, 28.57],
'STARK-PRIME_Hit@5': [41.84, 9.18, 13.27, 13.27, 34.69, 32.65, 21.43, 41.84, 39.80, 26.53, 46.94, 44.90],
'STARK-PRIME_R@20': [42.32, 10.69, 11.72, 17.62, 41.09, 39.01, 26.77, 48.10, 47.21, 25.56, 41.61, 41.61],
'STARK-PRIME_MRR': [30.37, 7.05, 10.07, 9.39, 26.35, 24.33, 15.24, 34.28, 32.98, 19.67, 36.32, 34.82]
}
# Initialize DataFrames
df_synthesized_full = pd.DataFrame(data_synthesized_full)
df_synthesized_10 = pd.DataFrame(data_synthesized_10)
df_human_generated = pd.DataFrame(data_human_generated)
# Model type definitions
model_types = {
'Sparse Retriever': ['BM25'],
'Small Dense Retrievers': ['DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)'],
'LLM-based Dense Retrievers': ['ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b'],
'Multivector Retrievers': ['multi-ada-002', 'ColBERTv2'],
'LLM Rerankers': ['Claude3 Reranker', 'GPT4 Reranker']
}
# Submission form validation functions
def validate_email(email_str):
"""Validate email format(s)"""
emails = [e.strip() for e in email_str.split(';')]
email_pattern = re.compile(r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$')
return all(email_pattern.match(email) for email in emails)
def validate_github_url(url):
"""Validate GitHub URL format"""
github_pattern = re.compile(
r'^https?:\/\/(?:www\.)?github\.com\/[\w-]+\/[\w.-]+\/?$'
)
return bool(github_pattern.match(url))
def validate_csv(file_obj):
"""Validate CSV file format and content"""
try:
df = pd.read_csv(file_obj.name)
required_cols = ['query_id', 'pred_rank']
if not all(col in df.columns for col in required_cols):
return False, "CSV must contain 'query_id' and 'pred_rank' columns"
try:
first_rank = eval(df['pred_rank'].iloc[0]) if isinstance(df['pred_rank'].iloc[0], str) else df['pred_rank'].iloc[0]
if not isinstance(first_rank, list) or len(first_rank) < 20:
return False, "pred_rank must be a list with at least 20 candidates"
except:
return False, "Invalid pred_rank format"
return True, "Valid CSV file"
except Exception as e:
return False, f"Error processing CSV: {str(e)}"
def sanitize_name(name):
"""Sanitize name for file system use"""
return re.sub(r'[^a-zA-Z0-9]', '_', name)
def save_submission(submission_data, csv_file):
"""
Save submission data and CSV file using model_name_team_name format
Args:
submission_data (dict): Metadata and results for the submission
csv_file: The uploaded CSV file object
"""
# Create folder name from model name and team name
model_name_clean = sanitize_name(submission_data['method_name'])
team_name_clean = sanitize_name(submission_data['team_name'])
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# Create folder name: model_name_team_name
folder_name = f"{model_name_clean}_{team_name_clean}"
submission_id = f"{folder_name}_{timestamp}"
# Create submission directory structure
base_dir = "submissions"
submission_dir = os.path.join(base_dir, folder_name)
os.makedirs(submission_dir, exist_ok=True)
# Save CSV file with timestamp to allow multiple submissions
csv_filename = f"predictions_{timestamp}.csv"
csv_path = os.path.join(submission_dir, csv_filename)
if hasattr(csv_file, 'name'):
with open(csv_file.name, 'rb') as source, open(csv_path, 'wb') as target:
target.write(source.read())
# Add file paths to submission data
submission_data.update({
"csv_path": csv_path,
"submission_id": submission_id,
"folder_name": folder_name
})
# Save metadata as JSON with timestamp
metadata_path = os.path.join(submission_dir, f"metadata_{timestamp}.json")
with open(metadata_path, 'w') as f:
json.dump(submission_data, f, indent=4)
# Update latest.json to track most recent submission
latest_path = os.path.join(submission_dir, "latest.json")
with open(latest_path, 'w') as f:
json.dump({
"latest_submission": timestamp,
"status": "pending_review",
"method_name": submission_data['method_name']
}, f, indent=4)
return submission_id
def update_leaderboard_data(submission_data):
"""
Update leaderboard data with new submission results
Only uses model name in the displayed table
"""
global df_synthesized_full, df_synthesized_10, df_human_generated
# Determine which DataFrame to update based on split
split_to_df = {
'test': df_synthesized_full,
'test-0.1': df_synthesized_10,
'human_generated_eval': df_human_generated
}
df_to_update = split_to_df[submission_data['split']]
# Prepare new row data
new_row = {
'Method': submission_data['method_name'], # Only use method name in table
f'STARK-{submission_data["dataset"].upper()}_Hit@1': submission_data['results']['hit@1'],
f'STARK-{submission_data["dataset"].upper()}_Hit@5': submission_data['results']['hit@5'],
f'STARK-{submission_data["dataset"].upper()}_R@20': submission_data['results']['recall@20'],
f'STARK-{submission_data["dataset"].upper()}_MRR': submission_data['results']['mrr']
}
# Check if method already exists
method_mask = df_to_update['Method'] == submission_data['method_name']
if method_mask.any():
# Update existing row
for col in new_row:
df_to_update.loc[method_mask, col] = new_row[col]
else:
# Add new row
df_to_update.loc[len(df_to_update)] = new_row
def process_submission(
method_name, team_name, dataset, split, contact_email,
code_repo, csv_file, model_description, hardware, paper_link
):
"""Process and validate submission"""
try:
# [Previous validation code remains the same]
# Process CSV file through evaluation pipeline
results = compute_metrics(
csv_file.name,
dataset=dataset.lower(),
split=split,
num_workers=4
)
if isinstance(results, str) and results.startswith("Error"):
return f"Evaluation error: {results}"
# Prepare submission data
submission_data = {
"method_name": method_name,
"team_name": team_name,
"dataset": dataset,
"split": split,
"contact_email": contact_email,
"code_repo": code_repo,
"model_description": model_description,
"hardware": hardware,
"paper_link": paper_link,
"results": results,
"status": "pending_review",
"submission_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
# Save submission and get ID
submission_id = save_submission(submission_data, csv_file)
# Update leaderboard data if submission is valid
update_leaderboard_data(submission_data)
return f"""
Submission successful! Your submission ID is: {submission_id}
Evaluation Results:
Hit@1: {results['hit@1']:.2f}
Hit@5: {results['hit@5']:.2f}
Recall@20: {results['recall@20']:.2f}
MRR: {results['mrr']:.2f}
Your submission has been saved and is pending review.
Once approved, your results will appear in the leaderboard under the method name: {method_name}
"""
except Exception as e:
return f"Error processing submission: {str(e)}"
def filter_by_model_type(df, selected_types):
if not selected_types:
return df.head(0)
selected_models = [model for type in selected_types for model in model_types[type]]
return df[df['Method'].isin(selected_models)]
def format_dataframe(df, dataset):
columns = ['Method'] + [col for col in df.columns if dataset in col]
filtered_df = df[columns].copy()
filtered_df.columns = [col.split('_')[-1] if '_' in col else col for col in filtered_df.columns]
filtered_df = filtered_df.sort_values('MRR', ascending=False)
return filtered_df
def update_tables(selected_types):
filtered_df_full = filter_by_model_type(df_synthesized_full, selected_types)
filtered_df_10 = filter_by_model_type(df_synthesized_10, selected_types)
filtered_df_human = filter_by_model_type(df_human_generated, selected_types)
outputs = []
for df in [filtered_df_full, filtered_df_10, filtered_df_human]:
for dataset in ['AMAZON', 'MAG', 'PRIME']:
outputs.append(format_dataframe(df, f"STARK-{dataset}"))
return outputs
css = """
table > thead {
white-space: normal
}
table {
--cell-width-1: 250px
}
table > tbody > tr > td:nth-child(2) > div {
overflow-x: auto
}
.tab-nav {
border-bottom: 1px solid rgba(255, 255, 255, 0.1);
margin-bottom: 1rem;
}
"""
# Main application
with gr.Blocks(css=css) as demo:
gr.Markdown("# Semi-structured Retrieval Benchmark (STaRK) Leaderboard")
gr.Markdown("Refer to the [STaRK paper](https://arxiv.org/pdf/2404.13207) for details on metrics, tasks and models.")
# Model type filter
model_type_filter = gr.CheckboxGroup(
choices=list(model_types.keys()),
value=list(model_types.keys()),
label="Model types",
interactive=True
)
# Initialize dataframes list
all_dfs = []
# Create nested tabs structure
with gr.Tabs() as outer_tabs:
with gr.TabItem("Synthesized (full)"):
with gr.Tabs() as inner_tabs1:
for dataset in ['AMAZON', 'MAG', 'PRIME']:
with gr.TabItem(dataset):
all_dfs.append(gr.DataFrame(interactive=False))
with gr.TabItem("Synthesized (10%)"):
with gr.Tabs() as inner_tabs2:
for dataset in ['AMAZON', 'MAG', 'PRIME']:
with gr.TabItem(dataset):
all_dfs.append(gr.DataFrame(interactive=False))
with gr.TabItem("Human-Generated"):
with gr.Tabs() as inner_tabs3:
for dataset in ['AMAZON', 'MAG', 'PRIME']:
with gr.TabItem(dataset):
all_dfs.append(gr.DataFrame(interactive=False))
# Submission section
gr.Markdown("---")
gr.Markdown("## Submit Your Results")
gr.Markdown("""
Submit your results to be included in the leaderboard. Please ensure your submission meets all requirements.
For questions, contact stark-qa@cs.stanford.edu
""")
with gr.Row():
with gr.Column():
method_name = gr.Textbox(
label="Method Name (max 25 chars)*",
placeholder="e.g., MyRetrievalModel-v1"
)
team_name = gr.Textbox(
label="Team Name (max 25 chars)*",
placeholder="e.g., Stanford NLP"
)
dataset = gr.Dropdown(
choices=["amazon", "mag", "prime"],
label="Dataset*",
value="amazon"
)
split = gr.Dropdown(
choices=["test", "test-0.1", "human_generated_eval"],
label="Split*",
value="test"
)
contact_email = gr.Textbox(
label="Contact Email(s)*",
placeholder="email@example.com; another@example.com"
)
with gr.Column():
code_repo = gr.Textbox(
label="Code Repository*",
placeholder="https://github.com/username/repository"
)
csv_file = gr.File(
label="Prediction CSV*",
file_types=[".csv"]
)
model_description = gr.Textbox(
label="Model Description*",
lines=3,
placeholder="Briefly describe how your retriever model works..."
)
hardware = gr.Textbox(
label="Hardware Specifications*",
placeholder="e.g., 4x NVIDIA A100 80GB"
)
paper_link = gr.Textbox(
label="Paper Link (Optional)",
placeholder="https://arxiv.org/abs/..."
)
submit_btn = gr.Button("Submit", variant="primary")
result = gr.Textbox(label="Submission Status", interactive=False)
# Set up event handlers
model_type_filter.change(
update_tables,
inputs=[model_type_filter],
outputs=all_dfs
)
submit_btn.click(
process_submission,
inputs=[
method_name, team_name, dataset, split, contact_email,
code_repo, csv_file, model_description, hardware, paper_link
],
outputs=result
)
# Initial table update
demo.load(
update_tables,
inputs=[model_type_filter],
outputs=all_dfs
)
# Launch the application
demo.launch()