Spaces:
Running
Running
File size: 37,299 Bytes
21a375e c8373c1 680cbe9 b65f2ef 7e2b9c0 c8373c1 b65f2ef 1a12918 b65f2ef c8373c1 21a375e c8373c1 21a375e c8373c1 21a375e c8373c1 c2c76a6 85d9e2b 518f6cc 85d9e2b 518f6cc 85d9e2b e65749f 85d9e2b e65749f 518f6cc 85d9e2b aa3c137 85d9e2b c2c76a6 aa3c137 c2c76a6 85d9e2b 518f6cc 85d9e2b 518f6cc 85d9e2b 518f6cc 85d9e2b c2c76a6 518f6cc 85d9e2b 518f6cc c2c76a6 518f6cc 85d9e2b 518f6cc 85d9e2b 518f6cc 85d9e2b 518f6cc 85d9e2b 518f6cc 85d9e2b 518f6cc 85d9e2b 518f6cc 85d9e2b 518f6cc 85d9e2b 518f6cc 85d9e2b e65749f c2c76a6 85d9e2b aa3c137 85d9e2b aa3c137 518f6cc 85d9e2b c2c76a6 85d9e2b c2c76a6 518f6cc c2c76a6 85d9e2b c2c76a6 85d9e2b c2c76a6 c8373c1 d30ceda c8373c1 d30ceda c8373c1 2f7b0cc c8373c1 d30ceda c8373c1 d30ceda c8373c1 680cbe9 6542cc6 df4f503 c8373c1 7e2b9c0 c8373c1 680cbe9 c8373c1 680cbe9 c8373c1 fc1afa7 680cbe9 c8373c1 d57a81b 680cbe9 b65f2ef c8373c1 d57a81b 7e2b9c0 fc1afa7 7e2b9c0 fc1afa7 7e2b9c0 d57a81b b65f2ef d57a81b b65f2ef 360a3ae b65f2ef 7e2b9c0 d57a81b b65f2ef d57a81b b65f2ef d57a81b b65f2ef 7e2b9c0 b65f2ef d57a81b 7e2b9c0 d57a81b b65f2ef 4903390 360a3ae b65f2ef 4903390 f3d9900 b65f2ef f3d9900 b65f2ef c8373c1 680cbe9 360a3ae 680cbe9 7e2b9c0 4903390 f3d9900 c8373c1 21a375e c8373c1 518f6cc c8373c1 21a375e c8373c1 21a375e c8373c1 1a12918 c8373c1 fe811f7 c8373c1 518f6cc c2c76a6 c8373c1 f3d9900 c8373c1 4903390 c8373c1 f3d9900 4903390 c8373c1 f3d9900 4903390 21a375e c8373c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 |
import gradio as gr
import pandas as pd
import numpy as np
import os
import re
from datetime import datetime
import json
import torch
from tqdm import tqdm
from concurrent.futures import ProcessPoolExecutor, as_completed
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from huggingface_hub import HfApi
import shutil
import tempfile
from stark_qa import load_qa
from stark_qa.evaluator import Evaluator
from utils.hub_storage import HubStorage
from utils.token_handler import TokenHandler
# Initialize storage once at startup
try:
REPO_ID = "snap-stanford/stark-leaderboard" # Replace with your space name
hub_storage = HubStorage(REPO_ID)
except Exception as e:
raise RuntimeError(f"Failed to initialize HuggingFace Hub storage: {e}")
def process_single_instance(args):
idx, eval_csv, qa_dataset, evaluator, eval_metrics = args
query, query_id, answer_ids, meta_info = qa_dataset[idx]
try:
pred_rank = eval_csv[eval_csv['query_id'] == query_id]['pred_rank'].item()
except IndexError:
raise IndexError(f'Error when processing query_id={query_id}, please make sure the predicted results exist for this query.')
except Exception as e:
raise RuntimeError(f'Unexpected error occurred while fetching prediction rank for query_id={query_id}: {e}')
if isinstance(pred_rank, str):
try:
pred_rank = eval(pred_rank)
except SyntaxError as e:
raise ValueError(f'Failed to parse pred_rank as a list for query_id={query_id}: {e}')
if not isinstance(pred_rank, list):
raise TypeError(f'Error when processing query_id={query_id}, expected pred_rank to be a list but got {type(pred_rank)}.')
pred_dict = {pred_rank[i]: -i for i in range(min(100, len(pred_rank)))}
answer_ids = torch.LongTensor(answer_ids)
result = evaluator.evaluate(pred_dict, answer_ids, metrics=eval_metrics)
result["idx"], result["query_id"] = idx, query_id
return result
def compute_metrics(csv_path: str, dataset: str, split: str, num_workers: int = 4):
candidate_ids_dict = {
'amazon': [i for i in range(957192)],
'mag': [i for i in range(1172724, 1872968)],
'prime': [i for i in range(129375)]
}
try:
eval_csv = pd.read_csv(csv_path)
if 'query_id' not in eval_csv.columns:
raise ValueError('No `query_id` column found in the submitted csv.')
if 'pred_rank' not in eval_csv.columns:
raise ValueError('No `pred_rank` column found in the submitted csv.')
eval_csv = eval_csv[['query_id', 'pred_rank']]
if dataset not in candidate_ids_dict:
raise ValueError(f"Invalid dataset '{dataset}', expected one of {list(candidate_ids_dict.keys())}.")
if split not in ['test', 'test-0.1', 'human_generated_eval']:
raise ValueError(f"Invalid split '{split}', expected one of ['test', 'test-0.1', 'human_generated_eval'].")
evaluator = Evaluator(candidate_ids_dict[dataset])
eval_metrics = ['hit@1', 'hit@5', 'recall@20', 'mrr']
qa_dataset = load_qa(dataset, human_generated_eval=split == 'human_generated_eval')
split_idx = qa_dataset.get_idx_split()
all_indices = split_idx[split].tolist()
results_list = []
query_ids = []
# Prepare args for each worker
args = [(idx, eval_csv, qa_dataset, evaluator, eval_metrics) for idx in all_indices]
with ProcessPoolExecutor(max_workers=num_workers) as executor:
futures = [executor.submit(process_single_instance, arg) for arg in args]
for future in tqdm(as_completed(futures), total=len(futures)):
result = future.result() # This will raise an error if the worker encountered one
results_list.append(result)
query_ids.append(result['query_id'])
# Concatenate results and compute final metrics
eval_csv = pd.concat([eval_csv, pd.DataFrame(results_list)], ignore_index=True)
final_results = {
metric: np.mean(eval_csv[eval_csv['query_id'].isin(query_ids)][metric]) for metric in eval_metrics
}
return final_results
except pd.errors.EmptyDataError:
return "Error: The CSV file is empty or could not be read. Please check the file and try again."
except FileNotFoundError:
return f"Error: The file {csv_path} could not be found. Please check the file path and try again."
except Exception as error:
return f"{error}"
# Data dictionaries for leaderboard
data_synthesized_full = {
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2'],
'STARK-AMAZON_Hit@1': [44.94, 15.29, 30.96, 26.56, 39.16, 40.93, 21.74, 42.08, 40.07, 46.10],
'STARK-AMAZON_Hit@5': [67.42, 47.93, 51.06, 50.01, 62.73, 64.37, 41.65, 66.87, 64.98, 66.02],
'STARK-AMAZON_R@20': [53.77, 44.49, 41.95, 52.05, 53.29, 54.28, 33.22, 56.52, 55.12, 53.44],
'STARK-AMAZON_MRR': [55.30, 30.20, 40.66, 37.75, 50.35, 51.60, 31.47, 53.46, 51.55, 55.51],
'STARK-MAG_Hit@1': [25.85, 10.51, 21.96, 12.88, 29.08, 30.06, 18.01, 37.90, 25.92, 31.18],
'STARK-MAG_Hit@5': [45.25, 35.23, 36.50, 39.01, 49.61, 50.58, 34.85, 56.74, 50.43, 46.42],
'STARK-MAG_R@20': [45.69, 42.11, 35.32, 46.97, 48.36, 50.49, 35.46, 46.40, 50.80, 43.94],
'STARK-MAG_MRR': [34.91, 21.34, 29.14, 29.12, 38.62, 39.66, 26.10, 47.25, 36.94, 38.39],
'STARK-PRIME_Hit@1': [12.75, 4.46, 6.53, 8.85, 12.63, 10.85, 10.10, 15.57, 15.10, 11.75],
'STARK-PRIME_Hit@5': [27.92, 21.85, 15.67, 21.35, 31.49, 30.23, 22.49, 33.42, 33.56, 23.85],
'STARK-PRIME_R@20': [31.25, 30.13, 16.52, 29.63, 36.00, 37.83, 26.34, 39.09, 38.05, 25.04],
'STARK-PRIME_MRR': [19.84, 12.38, 11.05, 14.73, 21.41, 19.99, 16.12, 24.11, 23.49, 17.39]
}
data_synthesized_10 = {
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'],
'STARK-AMAZON_Hit@1': [42.68, 16.46, 30.09, 25.00, 39.02, 43.29, 18.90, 43.29, 40.85, 44.31, 45.49, 44.79],
'STARK-AMAZON_Hit@5': [67.07, 50.00, 49.27, 48.17, 64.02, 67.68, 37.80, 71.34, 62.80, 65.24, 71.13, 71.17],
'STARK-AMAZON_R@20': [54.48, 42.15, 41.91, 51.65, 49.30, 56.04, 34.73, 56.14, 52.47, 51.00, 53.77, 55.35],
'STARK-AMAZON_MRR': [54.02, 30.20, 39.30, 36.87, 50.32, 54.20, 28.76, 55.07, 51.54, 55.07, 55.91, 55.69],
'STARK-MAG_Hit@1': [27.81, 11.65, 22.89, 12.03, 28.20, 34.59, 19.17, 38.35, 25.56, 31.58, 36.54, 40.90],
'STARK-MAG_Hit@5': [45.48, 36.84, 37.26, 37.97, 52.63, 50.75, 33.46, 58.64, 50.37, 47.36, 53.17, 58.18],
'STARK-MAG_R@20': [44.59, 42.30, 44.16, 47.98, 49.25, 50.75, 29.85, 46.38, 53.03, 45.72, 48.36, 48.60],
'STARK-MAG_MRR': [35.97, 21.82, 30.00, 28.70, 38.55, 42.90, 26.06, 48.25, 36.82, 38.98, 44.15, 49.00],
'STARK-PRIME_Hit@1': [13.93, 5.00, 6.78, 7.14, 15.36, 12.14, 9.29, 16.79, 15.36, 15.00, 17.79, 18.28],
'STARK-PRIME_Hit@5': [31.07, 23.57, 16.15, 17.14, 31.07, 31.42, 20.7, 34.29, 32.86, 26.07, 36.90, 37.28],
'STARK-PRIME_R@20': [32.84, 30.50, 17.07, 32.95, 37.88, 37.34, 25.54, 41.11, 40.99, 27.78, 35.57, 34.05],
'STARK-PRIME_MRR': [21.68, 13.50, 11.42, 16.27, 23.50, 21.23, 15.00, 24.99, 23.70, 19.98, 26.27, 26.55]
}
data_human_generated = {
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'],
'STARK-AMAZON_Hit@1': [27.16, 16.05, 25.93, 22.22, 39.50, 35.80, 29.63, 40.74, 46.91, 33.33, 53.09, 50.62],
'STARK-AMAZON_Hit@5': [51.85, 39.51, 54.32, 49.38, 64.19, 62.96, 46.91, 71.60, 72.84, 55.56, 74.07, 75.31],
'STARK-AMAZON_R@20': [29.23, 15.23, 23.69, 21.54, 35.46, 33.01, 21.21, 36.30, 40.22, 29.03, 35.46, 35.46],
'STARK-AMAZON_MRR': [18.79, 27.21, 37.12, 31.33, 52.65, 47.84, 38.61, 53.21, 58.74, 43.77, 62.11, 61.06],
'STARK-MAG_Hit@1': [32.14, 4.72, 25.00, 20.24, 28.57, 22.62, 16.67, 34.52, 23.81, 33.33, 38.10, 36.90],
'STARK-MAG_Hit@5': [41.67, 9.52, 30.95, 26.19, 41.67, 36.90, 28.57, 44.04, 41.67, 36.90, 45.24, 46.43],
'STARK-MAG_R@20': [32.46, 25.00, 27.24, 28.76, 35.95, 32.44, 21.74, 34.57, 39.85, 30.50, 35.95, 35.95],
'STARK-MAG_MRR': [37.42, 7.90, 27.98, 25.53, 35.81, 29.68, 21.59, 38.72, 31.43, 35.97, 42.00, 40.65],
'STARK-PRIME_Hit@1': [22.45, 2.04, 7.14, 6.12, 17.35, 16.33, 9.18, 25.51, 24.49, 15.31, 28.57, 28.57],
'STARK-PRIME_Hit@5': [41.84, 9.18, 13.27, 13.27, 34.69, 32.65, 21.43, 41.84, 39.80, 26.53, 46.94, 44.90],
'STARK-PRIME_R@20': [42.32, 10.69, 11.72, 17.62, 41.09, 39.01, 26.77, 48.10, 47.21, 25.56, 41.61, 41.61],
'STARK-PRIME_MRR': [30.37, 7.05, 10.07, 9.39, 26.35, 24.33, 15.24, 34.28, 32.98, 19.67, 36.32, 34.82]
}
# Initialize DataFrames
df_synthesized_full = pd.DataFrame(data_synthesized_full)
df_synthesized_10 = pd.DataFrame(data_synthesized_10)
df_human_generated = pd.DataFrame(data_human_generated)
# Model type definitions
model_types = {
'Sparse Retriever': ['BM25'],
'Small Dense Retrievers': ['DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)'],
'LLM-based Dense Retrievers': ['ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b'],
'Multivector Retrievers': ['multi-ada-002', 'ColBERTv2'],
'LLM Rerankers': ['Claude3 Reranker', 'GPT4 Reranker']
}
# Submission form validation functions
def validate_email(email_str):
"""Validate email format(s)"""
emails = [e.strip() for e in email_str.split(';')]
email_pattern = re.compile(r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$')
return all(email_pattern.match(email) for email in emails)
def validate_github_url(url):
"""Validate GitHub URL format"""
github_pattern = re.compile(
r'^https?:\/\/(?:www\.)?github\.com\/[\w-]+\/[\w.-]+\/?$'
)
return bool(github_pattern.match(url))
def validate_csv(file_obj):
"""Validate CSV file format and content"""
try:
df = pd.read_csv(file_obj.name)
required_cols = ['query_id', 'pred_rank']
if not all(col in df.columns for col in required_cols):
return False, "CSV must contain 'query_id' and 'pred_rank' columns"
try:
first_rank = eval(df['pred_rank'].iloc[0]) if isinstance(df['pred_rank'].iloc[0], str) else df['pred_rank'].iloc[0]
if not isinstance(first_rank, list) or len(first_rank) < 20:
return False, "pred_rank must be a list with at least 20 candidates"
except:
return False, "Invalid pred_rank format"
return True, "Valid CSV file"
except Exception as e:
return False, f"Error processing CSV: {str(e)}"
def sanitize_name(name):
"""Sanitize name for file system use"""
return re.sub(r'[^a-zA-Z0-9]', '_', name)
def scan_submissions_directory():
"""
Scans the submissions directory and updates the leaderboard tables with all submitted results.
Returns a dictionary mapping split names to lists of submissions.
"""
global df_synthesized_full, df_synthesized_10, df_human_generated
try:
# Initialize HuggingFace API
api = HfApi()
# Track submissions for each split
submissions_by_split = {
'test': [],
'test-0.1': [],
'human_generated_eval': []
}
# Get all files from repository
try:
all_files = api.list_repo_files(
repo_id=REPO_ID,
repo_type="space"
)
# Filter for files in submissions directory
repo_files = [f for f in all_files if f.startswith('submissions/')]
except Exception as e:
print(f"Error listing repository contents: {str(e)}")
return submissions_by_split
if not repo_files:
print("No submissions directory found or empty")
return submissions_by_split
# Group files by team folders
folder_files = {}
for filepath in repo_files:
parts = filepath.split('/')
if len(parts) < 3: # Need at least submissions/team_folder/file
continue
folder_name = parts[1] # team_folder name
if folder_name not in folder_files:
folder_files[folder_name] = []
folder_files[folder_name].append(filepath)
# Process each team folder
for folder_name, files in folder_files.items():
try:
# Find latest.json in this folder
latest_file = next((f for f in files if f.endswith('latest.json')), None)
if not latest_file:
print(f"No latest.json found in {folder_name}")
continue
# Read latest.json
try:
latest_content = api.hf_hub_download(
repo_id=REPO_ID,
repo_type="space",
filename=latest_file,
text=True
)
latest_info = json.loads(latest_content)
except Exception as e:
print(f"Error reading latest.json for {folder_name}: {str(e)}")
continue
# Check submission status
if latest_info.get('status') != 'approved':
print(f"Skipping unapproved submission in {folder_name}")
continue
timestamp = latest_info.get('latest_submission')
if not timestamp:
print(f"No timestamp found in latest.json for {folder_name}")
continue
# Find metadata file
metadata_file = next(
(f for f in files if f.endswith(f'metadata_{timestamp}.json')),
None
)
if not metadata_file:
print(f"No matching metadata file found for {folder_name} timestamp {timestamp}")
continue
# Read metadata file
try:
metadata_content = api.hf_hub_download(
repo_id=REPO_ID,
repo_type="space",
filename=metadata_file,
text=True
)
submission_data = json.loads(metadata_content)
except Exception as e:
print(f"Error reading metadata for {folder_name}: {str(e)}")
continue
# Map the split name if necessary
split = submission_data.get('Split')
if split in submissions_by_split:
submissions_by_split[split].append(submission_data)
# Update the appropriate DataFrame based on the split
if split == 'test':
df_to_update = df_synthesized_full
elif split == 'test-0.1':
df_to_update = df_synthesized_10
else: # human_generated_eval
df_to_update = df_human_generated
# Add row to DataFrame
new_row = {
'Method': submission_data['Method Name'],
f'STARK-{submission_data["Dataset"].upper()}_Hit@1': submission_data['results']['hit@1'],
f'STARK-{submission_data["Dataset"].upper()}_Hit@5': submission_data['results']['hit@5'],
f'STARK-{submission_data["Dataset"].upper()}_R@20': submission_data['results']['recall@20'],
f'STARK-{submission_data["Dataset"].upper()}_MRR': submission_data['results']['mrr']
}
# Update existing row or add new one
method_mask = df_to_update['Method'] == submission_data['Method Name']
if method_mask.any():
for col in new_row:
df_to_update.loc[method_mask, col] = new_row[col]
else:
df_to_update.loc[len(df_to_update)] = new_row
print(f"Successfully added submission from {folder_name} to {split} leaderboard")
else:
print(f"Invalid split '{split}' found in {folder_name}")
except Exception as e:
print(f"Error processing folder {folder_name}: {str(e)}")
continue
# Print summary
print("\nLeaderboard initialization summary:")
for split, submissions in submissions_by_split.items():
print(f"{split}: {len(submissions)} submissions")
return submissions_by_split
except Exception as e:
print(f"Error scanning submissions directory: {str(e)}")
return None
def initialize_leaderboard():
"""
Initialize the leaderboard with baseline results and submitted results.
"""
global df_synthesized_full, df_synthesized_10, df_human_generated
try:
# First, initialize with baseline results
df_synthesized_full = pd.DataFrame(data_synthesized_full)
df_synthesized_10 = pd.DataFrame(data_synthesized_10)
df_human_generated = pd.DataFrame(data_human_generated)
print("Initialized with baseline results")
# Then scan and add submitted results
scan_submissions_directory()
print("Leaderboard initialization complete")
except Exception as e:
print(f"Error initializing leaderboard: {str(e)}")
# Utility function to get file content
def get_file_content(file_path):
"""
Helper function to safely read file content from HuggingFace repository
"""
try:
api = HfApi()
content = api.file_download(
repo_id=REPO_ID,
repo_type="space",
filename=file_path
)
return content.read().decode('utf-8')
except Exception as e:
print(f"Error reading file {file_path}: {str(e)}")
return None
def save_submission(submission_data, csv_file):
"""
Save submission data and CSV file using model_name_team_name format
Args:
submission_data (dict): Metadata and results for the submission
csv_file: The uploaded CSV file object
"""
# Create folder name from model name and team name
model_name_clean = sanitize_name(submission_data['Method Name'])
team_name_clean = sanitize_name(submission_data['Team Name'])
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# Create folder name: model_name_team_name
folder_name = f"{model_name_clean}_{team_name_clean}"
submission_id = f"{folder_name}_{timestamp}"
# Create submission directory structure
base_dir = "submissions"
submission_dir = os.path.join(base_dir, folder_name)
os.makedirs(submission_dir, exist_ok=True)
# Save CSV file with timestamp to allow multiple submissions
csv_filename = f"predictions_{timestamp}.csv"
csv_path = os.path.join(submission_dir, csv_filename)
if hasattr(csv_file, 'name'):
with open(csv_file.name, 'rb') as source, open(csv_path, 'wb') as target:
target.write(source.read())
# Add file paths to submission data
submission_data.update({
"csv_path": csv_path,
"submission_id": submission_id,
"folder_name": folder_name
})
# Save metadata as JSON with timestamp
metadata_path = os.path.join(submission_dir, f"metadata_{timestamp}.json")
with open(metadata_path, 'w') as f:
json.dump(submission_data, f, indent=4)
# Update latest.json to track most recent submission
latest_path = os.path.join(submission_dir, "latest.json")
with open(latest_path, 'w') as f:
json.dump({
"latest_submission": timestamp,
"status": "pending_review",
"method_name": submission_data['Method Name']
}, f, indent=4)
return submission_id
def update_leaderboard_data(submission_data):
"""
Update leaderboard data with new submission results
Only uses model name in the displayed table
"""
global df_synthesized_full, df_synthesized_10, df_human_generated
# Determine which DataFrame to update based on split
split_to_df = {
'test': df_synthesized_full,
'test-0.1': df_synthesized_10,
'human_generated_eval': df_human_generated
}
df_to_update = split_to_df[submission_data['Split']]
# Prepare new row data
new_row = {
'Method': submission_data['Method Name'], # Only use method name in table
f'STARK-{submission_data["Dataset"].upper()}_Hit@1': submission_data['results']['hit@1'],
f'STARK-{submission_data["Dataset"].upper()}_Hit@5': submission_data['results']['hit@5'],
f'STARK-{submission_data["Dataset"].upper()}_R@20': submission_data['results']['recall@20'],
f'STARK-{submission_data["Dataset"].upper()}_MRR': submission_data['results']['mrr']
}
# Check if method already exists
method_mask = df_to_update['Method'] == submission_data['Method Name']
if method_mask.any():
# Update existing row
for col in new_row:
df_to_update.loc[method_mask, col] = new_row[col]
else:
# Add new row
df_to_update.loc[len(df_to_update)] = new_row
# Function to get emails from meta_data
def get_emails_from_metadata(meta_data):
"""
Extracts emails from the meta_data dictionary.
Args:
meta_data (dict): The metadata dictionary that contains the 'Contact Email(s)' field.
Returns:
list: A list of email addresses.
"""
return [email.strip() for email in meta_data.get("Contact Email(s)", "").split(";")]
# Function to format meta_data as an HTML table (without Prediction CSV)
def format_metadata_as_table(meta_data):
"""
Formats metadata dictionary into an HTML table for the email.
Handles multiple contact emails separated by a semicolon.
Args:
meta_data (dict): Dictionary containing submission metadata.
Returns:
str: HTML string representing the metadata table.
"""
table_rows = ""
for key, value in meta_data.items():
if key == "Contact Email(s)":
# Ensure that contact emails are split by semicolon
emails = value.split(';')
formatted_emails = "; ".join([email.strip() for email in emails])
table_rows += f"<tr><td><b>{key}</b></td><td>{formatted_emails}</td></tr>"
elif key != "Prediction CSV": # Exclude the Prediction CSV field
table_rows += f"<tr><td><b>{key}</b></td><td>{value}</td></tr>"
table_html = f"""
<table border="1" cellpadding="5" cellspacing="0">
{table_rows}
</table>
"""
return table_html
# Function to get emails from meta_data
def get_emails_from_metadata(meta_data):
"""
Extracts emails from the meta_data dictionary.
Args:
meta_data (dict): The metadata dictionary that contains the 'Contact Email(s)' field.
Returns:
list: A list of email addresses.
"""
return [email.strip() for email in meta_data.get("Contact Email(s)", "").split(";")]
def format_evaluation_results(results):
"""
Formats the evaluation results dictionary into a readable string.
Args:
results (dict): Dictionary containing evaluation metrics and their values.
Returns:
str: Formatted string of evaluation results.
"""
result_lines = [f"{metric}: {value}" for metric, value in results.items()]
return "\n".join(result_lines)
def process_submission(
method_name, team_name, dataset, split, contact_email,
code_repo, csv_file, model_description, hardware, paper_link
):
"""Process and validate submission"""
temp_files = []
try:
# Input validation
if not all([method_name, team_name, dataset, split, contact_email, code_repo, csv_file]):
return "Error: Please fill in all required fields"
# Length validation
if len(method_name) > 25:
return "Error: Method name must be 25 characters or less"
if len(team_name) > 25:
return "Error: Team name must be 25 characters or less"
if not validate_email(contact_email):
return "Error: Invalid email format"
if not validate_github_url(code_repo):
return "Error: Invalid GitHub repository URL"
# Create metadata at the beginning to ensure it's available for error handling
meta_data = {
"Method Name": method_name,
"Team Name": team_name,
"Dataset": dataset,
"Split": split,
"Contact Email(s)": contact_email,
"Code Repository": code_repo,
"Model Description": model_description,
"Hardware": hardware,
"(Optional) Paper link": paper_link
}
# Generate folder name and timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
folder_name = f"{sanitize_name(method_name)}_{sanitize_name(team_name)}"
# Process CSV file
temp_csv_path = None
if isinstance(csv_file, str):
temp_csv_path = csv_file
else:
temp_fd, temp_csv_path = tempfile.mkstemp(suffix='.csv')
temp_files.append(temp_csv_path)
os.close(temp_fd)
if hasattr(csv_file, 'name'):
shutil.copy2(csv_file.name, temp_csv_path)
else:
with open(temp_csv_path, 'wb') as temp_file:
if hasattr(csv_file, 'seek'):
csv_file.seek(0)
if hasattr(csv_file, 'read'):
shutil.copyfileobj(csv_file, temp_file)
else:
temp_file.write(csv_file)
if not os.path.exists(temp_csv_path):
raise FileNotFoundError(f"Failed to create temporary CSV file at {temp_csv_path}")
# Compute metrics
results = compute_metrics(
csv_path=temp_csv_path,
dataset=dataset.lower(),
split=split,
num_workers=4
)
if isinstance(results, str):
# send_error_notification(meta_data, results)
return f"Evaluation error: {results}"
# Process results
processed_results = {
"hit@1": round(results['hit@1'] * 100, 2),
"hit@5": round(results['hit@5'] * 100, 2),
"recall@20": round(results['recall@20'] * 100, 2),
"mrr": round(results['mrr'] * 100, 2)
}
# Save files to HuggingFace Hub
try:
# 1. Save CSV file
csv_filename = f"predictions_{timestamp}.csv"
csv_path_in_repo = f"submissions/{folder_name}/{csv_filename}"
hub_storage.save_to_hub(
file_content=temp_csv_path,
path_in_repo=csv_path_in_repo,
commit_message=f"Add submission: {method_name} by {team_name}"
)
# 2. Save metadata
submission_data = {
**meta_data,
"results": processed_results,
"status": "approved", # or "pending_review"
"submission_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"csv_path": csv_path_in_repo
}
metadata_fd, temp_metadata_path = tempfile.mkstemp(suffix='.json')
temp_files.append(temp_metadata_path)
os.close(metadata_fd)
with open(temp_metadata_path, 'w') as f:
json.dump(submission_data, f, indent=4)
metadata_path = f"submissions/{folder_name}/metadata_{timestamp}.json"
hub_storage.save_to_hub(
file_content=temp_metadata_path,
path_in_repo=metadata_path,
commit_message=f"Add metadata: {method_name} by {team_name}"
)
# 3. Create or update latest.json
latest_info = {
"latest_submission": timestamp,
"status": "approved", # or "pending_review"
"method_name": method_name,
"team_name": team_name
}
latest_fd, temp_latest_path = tempfile.mkstemp(suffix='.json')
temp_files.append(temp_latest_path)
os.close(latest_fd)
with open(temp_latest_path, 'w') as f:
json.dump(latest_info, f, indent=4)
latest_path = f"submissions/{folder_name}/latest.json"
hub_storage.save_to_hub(
file_content=temp_latest_path,
path_in_repo=latest_path,
commit_message=f"Update latest submission info for {method_name}"
)
except Exception as e:
raise RuntimeError(f"Failed to save files to HuggingFace Hub: {str(e)}")
# Send confirmation email and update leaderboard data
# send_submission_confirmation(meta_data, processed_results)
update_leaderboard_data(submission_data)
# Return success message
return f"""
Submission successful!
Evaluation Results:
Hit@1: {processed_results['hit@1']:.2f}%
Hit@5: {processed_results['hit@5']:.2f}%
Recall@20: {processed_results['recall@20']:.2f}%
MRR: {processed_results['mrr']:.2f}%
Your submission has been saved and a confirmation email has been sent to {contact_email}.
Once approved, your results will appear in the leaderboard under: {method_name}
You can find your submission at:
https://huggingface.co/spaces/{REPO_ID}/tree/main/submissions/{folder_name}
Please refresh the page to see your submission in the leaderboard.
"""
except Exception as e:
error_message = f"Error processing submission: {str(e)}"
# send_error_notification(meta_data, error_message)
return error_message
finally:
# Clean up temporary files
for temp_file in temp_files:
try:
if os.path.exists(temp_file):
os.unlink(temp_file)
except Exception as e:
print(f"Warning: Failed to delete temporary file {temp_file}: {str(e)}")
def filter_by_model_type(df, selected_types):
if not selected_types:
return df.head(0)
selected_models = [model for type in selected_types for model in model_types[type]]
return df[df['Method'].isin(selected_models)]
def format_dataframe(df, dataset):
columns = ['Method'] + [col for col in df.columns if dataset in col]
filtered_df = df[columns].copy()
filtered_df.columns = [col.split('_')[-1] if '_' in col else col for col in filtered_df.columns]
filtered_df = filtered_df.sort_values('MRR', ascending=False)
return filtered_df
def update_tables(selected_types):
filtered_df_full = filter_by_model_type(df_synthesized_full, selected_types)
filtered_df_10 = filter_by_model_type(df_synthesized_10, selected_types)
filtered_df_human = filter_by_model_type(df_human_generated, selected_types)
outputs = []
for df in [filtered_df_full, filtered_df_10, filtered_df_human]:
for dataset in ['AMAZON', 'MAG', 'PRIME']:
outputs.append(format_dataframe(df, f"STARK-{dataset}"))
return outputs
css = """
table > thead {
white-space: normal
}
table {
--cell-width-1: 250px
}
table > tbody > tr > td:nth-child(2) > div {
overflow-x: auto
}
.tab-nav {
border-bottom: 1px solid rgba(255, 255, 255, 0.1);
margin-bottom: 1rem;
}
"""
# Main application
with gr.Blocks(css=css) as demo:
gr.Markdown("# Semi-structured Retrieval Benchmark (STaRK) Leaderboard")
gr.Markdown("Refer to the [STaRK paper](https://arxiv.org/pdf/2404.13207) for details on metrics, tasks and models.")
# Initialize leaderboard at startup
print("Starting leaderboard initialization...")
initialize_leaderboard()
print("Leaderboard initialization finished")
# Model type filter
model_type_filter = gr.CheckboxGroup(
choices=list(model_types.keys()),
value=list(model_types.keys()),
label="Model types",
interactive=True
)
# Initialize dataframes list
all_dfs = []
# Create nested tabs structure
with gr.Tabs() as outer_tabs:
with gr.TabItem("Synthesized (full)"):
with gr.Tabs() as inner_tabs1:
for dataset in ['AMAZON', 'MAG', 'PRIME']:
with gr.TabItem(dataset):
all_dfs.append(gr.DataFrame(interactive=False))
with gr.TabItem("Synthesized (10%)"):
with gr.Tabs() as inner_tabs2:
for dataset in ['AMAZON', 'MAG', 'PRIME']:
with gr.TabItem(dataset):
all_dfs.append(gr.DataFrame(interactive=False))
with gr.TabItem("Human-Generated"):
with gr.Tabs() as inner_tabs3:
for dataset in ['AMAZON', 'MAG', 'PRIME']:
with gr.TabItem(dataset):
all_dfs.append(gr.DataFrame(interactive=False))
# Submission section
gr.Markdown("---")
gr.Markdown("## Submit Your Results")
gr.Markdown("""
Submit your results to be included in the leaderboard. Please ensure your submission meets all requirements.
For questions, contact stark-qa@cs.stanford.edu
""")
with gr.Row():
with gr.Column():
method_name = gr.Textbox(
label="Method Name (max 25 chars)*",
placeholder="e.g., MyRetrievalModel-v1"
)
team_name = gr.Textbox(
label="Team Name (max 25 chars)*",
placeholder="e.g., Stanford NLP"
)
dataset = gr.Dropdown(
choices=["amazon", "mag", "prime"],
label="Dataset*",
value="amazon"
)
split = gr.Dropdown(
choices=["test", "test-0.1", "human_generated_eval"],
label="Split*",
value="test"
)
contact_email = gr.Textbox(
label="Contact Email(s)*",
placeholder="email@example.com; another@example.com"
)
with gr.Column():
code_repo = gr.Textbox(
label="Code Repository*",
placeholder="https://github.com/snap-stanford/stark-leaderboard"
)
csv_file = gr.File(
label="Prediction CSV*",
file_types=[".csv"],
type="filepath" # Important: specify type as filepath
)
model_description = gr.Textbox(
label="Model Description*",
lines=3,
placeholder="Briefly describe how your retriever model works..."
)
hardware = gr.Textbox(
label="Hardware Specifications*",
placeholder="e.g., 4x NVIDIA A100 80GB"
)
paper_link = gr.Textbox(
label="Paper Link (Optional)",
placeholder="https://arxiv.org/abs/..."
)
submit_btn = gr.Button("Submit", variant="primary")
result = gr.Textbox(label="Submission Status", interactive=False)
# Set up event handlers
model_type_filter.change(
update_tables,
inputs=[model_type_filter],
outputs=all_dfs
)
# Event handler for submission button
submit_btn.click(
fn=process_submission,
inputs=[
method_name, team_name, dataset, split, contact_email,
code_repo, csv_file, model_description, hardware, paper_link
],
outputs=result
).success( # Add a success handler to update tables after successful submission
fn=update_tables,
inputs=[model_type_filter],
outputs=all_dfs
)
# Initial table update
demo.load(
update_tables,
inputs=[model_type_filter],
outputs=all_dfs
)
# Launch the application
demo.launch() |