File size: 21,408 Bytes
21a375e
 
c8373c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21a375e
c8373c1
21a375e
c8373c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21a375e
c8373c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21a375e
c8373c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21a375e
c8373c1
 
 
 
21a375e
c8373c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21a375e
c8373c1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import gradio as gr
import pandas as pd
import numpy as np
import os
import re
from datetime import datetime
import json
import torch
from tqdm import tqdm
from concurrent.futures import ProcessPoolExecutor, as_completed

from stark_qa import load_qa
from stark_qa.evaluator import Evaluator


def process_single_instance(args):
    idx, eval_csv, qa_dataset, evaluator, eval_metrics = args
    query, query_id, answer_ids, meta_info = qa_dataset[idx]

    try:
        pred_rank = eval_csv[eval_csv['query_id'] == query_id]['pred_rank'].item()
    except IndexError:
        raise IndexError(f'Error when processing query_id={query_id}, please make sure the predicted results exist for this query.')
    except Exception as e:
        raise RuntimeError(f'Unexpected error occurred while fetching prediction rank for query_id={query_id}: {e}')

    if isinstance(pred_rank, str):
        try:
            pred_rank = eval(pred_rank)
        except SyntaxError as e:
            raise ValueError(f'Failed to parse pred_rank as a list for query_id={query_id}: {e}')
    
    if not isinstance(pred_rank, list):
        raise TypeError(f'Error when processing query_id={query_id}, expected pred_rank to be a list but got {type(pred_rank)}.')

    pred_dict = {pred_rank[i]: -i for i in range(min(100, len(pred_rank)))}
    answer_ids = torch.LongTensor(answer_ids)
    result = evaluator.evaluate(pred_dict, answer_ids, metrics=eval_metrics)

    result["idx"], result["query_id"] = idx, query_id
    return result


def compute_metrics(csv_path: str, dataset: str, split: str, num_workers: int = 4):
    candidate_ids_dict = {
        'amazon': [i for i in range(957192)],
        'mag': [i for i in range(1172724, 1872968)],
        'prime': [i for i in range(129375)]
    }
    try:
        eval_csv = pd.read_csv(csv_path)
        if 'query_id' not in eval_csv.columns:
            raise ValueError('No `query_id` column found in the submitted csv.')
        if 'pred_rank' not in eval_csv.columns:
            raise ValueError('No `pred_rank` column found in the submitted csv.')

        eval_csv = eval_csv[['query_id', 'pred_rank']]

        if dataset not in candidate_ids_dict:
            raise ValueError(f"Invalid dataset '{dataset}', expected one of {list(candidate_ids_dict.keys())}.")
        if split not in ['test', 'test-0.1', 'human_generated_eval']:
            raise ValueError(f"Invalid split '{split}', expected one of ['test', 'test-0.1', 'human_generated_eval'].")

        evaluator = Evaluator(candidate_ids_dict[dataset])
        eval_metrics = ['hit@1', 'hit@5', 'recall@20', 'mrr']
        qa_dataset = load_qa(dataset, human_generated_eval=split == 'human_generated_eval')
        split_idx = qa_dataset.get_idx_split()
        all_indices = split_idx[split].tolist()

        results_list = []
        query_ids = []

        # Prepare args for each worker
        args = [(idx, eval_csv, qa_dataset, evaluator, eval_metrics) for idx in all_indices]

        with ProcessPoolExecutor(max_workers=num_workers) as executor:
            futures = [executor.submit(process_single_instance, arg) for arg in args]
            for future in tqdm(as_completed(futures), total=len(futures)):
                result = future.result()  # This will raise an error if the worker encountered one
                results_list.append(result)
                query_ids.append(result['query_id'])

        # Concatenate results and compute final metrics
        eval_csv = pd.concat([eval_csv, pd.DataFrame(results_list)], ignore_index=True)
        final_results = {
            metric: np.mean(eval_csv[eval_csv['query_id'].isin(query_ids)][metric]) for metric in eval_metrics
        }
        return final_results

    except pd.errors.EmptyDataError:
        return "Error: The CSV file is empty or could not be read. Please check the file and try again."
    except FileNotFoundError:
        return f"Error: The file {csv_path} could not be found. Please check the file path and try again."
    except Exception as error:
        return f"{error}"


# Data dictionaries for leaderboard
data_synthesized_full = {
    'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2'],
    'STARK-AMAZON_Hit@1': [44.94, 15.29, 30.96, 26.56, 39.16, 40.93, 21.74, 42.08, 40.07, 46.10],
    'STARK-AMAZON_Hit@5': [67.42, 47.93, 51.06, 50.01, 62.73, 64.37, 41.65, 66.87, 64.98, 66.02],
    'STARK-AMAZON_R@20': [53.77, 44.49, 41.95, 52.05, 53.29, 54.28, 33.22, 56.52, 55.12, 53.44],
    'STARK-AMAZON_MRR': [55.30, 30.20, 40.66, 37.75, 50.35, 51.60, 31.47, 53.46, 51.55, 55.51],
    'STARK-MAG_Hit@1': [25.85, 10.51, 21.96, 12.88, 29.08, 30.06, 18.01, 37.90, 25.92, 31.18],
    'STARK-MAG_Hit@5': [45.25, 35.23, 36.50, 39.01, 49.61, 50.58, 34.85, 56.74, 50.43, 46.42],
    'STARK-MAG_R@20': [45.69, 42.11, 35.32, 46.97, 48.36, 50.49, 35.46, 46.40, 50.80, 43.94],
    'STARK-MAG_MRR': [34.91, 21.34, 29.14, 29.12, 38.62, 39.66, 26.10, 47.25, 36.94, 38.39],
    'STARK-PRIME_Hit@1': [12.75, 4.46, 6.53, 8.85, 12.63, 10.85, 10.10, 15.57, 15.10, 11.75],
    'STARK-PRIME_Hit@5': [27.92, 21.85, 15.67, 21.35, 31.49, 30.23, 22.49, 33.42, 33.56, 23.85],
    'STARK-PRIME_R@20': [31.25, 30.13, 16.52, 29.63, 36.00, 37.83, 26.34, 39.09, 38.05, 25.04],
    'STARK-PRIME_MRR': [19.84, 12.38, 11.05, 14.73, 21.41, 19.99, 16.12, 24.11, 23.49, 17.39]
}

data_synthesized_10 = {
    'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'],
    'STARK-AMAZON_Hit@1': [42.68, 16.46, 30.09, 25.00, 39.02, 43.29, 18.90, 43.29, 40.85, 44.31, 45.49, 44.79],
    'STARK-AMAZON_Hit@5': [67.07, 50.00, 49.27, 48.17, 64.02, 67.68, 37.80, 71.34, 62.80, 65.24, 71.13, 71.17],
    'STARK-AMAZON_R@20': [54.48, 42.15, 41.91, 51.65, 49.30, 56.04, 34.73, 56.14, 52.47, 51.00, 53.77, 55.35],
    'STARK-AMAZON_MRR': [54.02, 30.20, 39.30, 36.87, 50.32, 54.20, 28.76, 55.07, 51.54, 55.07, 55.91, 55.69],
    'STARK-MAG_Hit@1': [27.81, 11.65, 22.89, 12.03, 28.20, 34.59, 19.17, 38.35, 25.56, 31.58, 36.54, 40.90],
    'STARK-MAG_Hit@5': [45.48, 36.84, 37.26, 37.97, 52.63, 50.75, 33.46, 58.64, 50.37, 47.36, 53.17, 58.18],
    'STARK-MAG_R@20': [44.59, 42.30, 44.16, 47.98, 49.25, 50.75, 29.85, 46.38, 53.03, 45.72, 48.36, 48.60],
    'STARK-MAG_MRR': [35.97, 21.82, 30.00, 28.70, 38.55, 42.90, 26.06, 48.25, 36.82, 38.98, 44.15, 49.00],
    'STARK-PRIME_Hit@1': [13.93, 5.00, 6.78, 7.14, 15.36, 12.14, 9.29, 16.79, 15.36, 15.00, 17.79, 18.28],
    'STARK-PRIME_Hit@5': [31.07, 23.57, 16.15, 17.14, 31.07, 31.42, 20.7, 34.29, 32.86, 26.07, 36.90, 37.28],
    'STARK-PRIME_R@20': [32.84, 30.50, 17.07, 32.95, 37.88, 37.34, 25.54, 41.11, 40.99, 27.78, 35.57, 34.05],
    'STARK-PRIME_MRR': [21.68, 13.50, 11.42, 16.27, 23.50, 21.23, 15.00, 24.99, 23.70, 19.98, 26.27, 26.55]
}

data_human_generated = {
    'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'],
    'STARK-AMAZON_Hit@1': [27.16, 16.05, 25.93, 22.22, 39.50, 35.80, 29.63, 40.74, 46.91, 33.33, 53.09, 50.62],
    'STARK-AMAZON_Hit@5': [51.85, 39.51, 54.32, 49.38, 64.19, 62.96, 46.91, 71.60, 72.84, 55.56, 74.07, 75.31],
    'STARK-AMAZON_R@20': [29.23, 15.23, 23.69, 21.54, 35.46, 33.01, 21.21, 36.30, 40.22, 29.03, 35.46, 35.46],
    'STARK-AMAZON_MRR': [18.79, 27.21, 37.12, 31.33, 52.65, 47.84, 38.61, 53.21, 58.74, 43.77, 62.11, 61.06],
    'STARK-MAG_Hit@1': [32.14, 4.72, 25.00, 20.24, 28.57, 22.62, 16.67, 34.52, 23.81, 33.33, 38.10, 36.90],
    'STARK-MAG_Hit@5': [41.67, 9.52, 30.95, 26.19, 41.67, 36.90, 28.57, 44.04, 41.67, 36.90, 45.24, 46.43],
    'STARK-MAG_R@20': [32.46, 25.00, 27.24, 28.76, 35.95, 32.44, 21.74, 34.57, 39.85, 30.50, 35.95, 35.95],
    'STARK-MAG_MRR': [37.42, 7.90, 27.98, 25.53, 35.81, 29.68, 21.59, 38.72, 31.43, 35.97, 42.00, 40.65],
    'STARK-PRIME_Hit@1': [22.45, 2.04, 7.14, 6.12, 17.35, 16.33, 9.18, 25.51, 24.49, 15.31, 28.57, 28.57],
    'STARK-PRIME_Hit@5': [41.84, 9.18, 13.27, 13.27, 34.69, 32.65, 21.43, 41.84, 39.80, 26.53, 46.94, 44.90],
    'STARK-PRIME_R@20': [42.32, 10.69, 11.72, 17.62, 41.09, 39.01, 26.77, 48.10, 47.21, 25.56, 41.61, 41.61],
    'STARK-PRIME_MRR': [30.37, 7.05, 10.07, 9.39, 26.35, 24.33, 15.24, 34.28, 32.98, 19.67, 36.32, 34.82]
}

# Initialize DataFrames
df_synthesized_full = pd.DataFrame(data_synthesized_full)
df_synthesized_10 = pd.DataFrame(data_synthesized_10)
df_human_generated = pd.DataFrame(data_human_generated)

# Model type definitions
model_types = {
    'Sparse Retriever': ['BM25'],
    'Small Dense Retrievers': ['DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)'],
    'LLM-based Dense Retrievers': ['ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b'],
    'Multivector Retrievers': ['multi-ada-002', 'ColBERTv2'],
    'LLM Rerankers': ['Claude3 Reranker', 'GPT4 Reranker']
}

# Submission form validation functions
def validate_email(email_str):
    """Validate email format(s)"""
    emails = [e.strip() for e in email_str.split(';')]
    email_pattern = re.compile(r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$')
    return all(email_pattern.match(email) for email in emails)

def validate_github_url(url):
    """Validate GitHub URL format"""
    github_pattern = re.compile(
        r'^https?:\/\/(?:www\.)?github\.com\/[\w-]+\/[\w.-]+\/?$'
    )
    return bool(github_pattern.match(url))

def validate_csv(file_obj):
    """Validate CSV file format and content"""
    try:
        df = pd.read_csv(file_obj.name)
        required_cols = ['query_id', 'pred_rank']
        
        if not all(col in df.columns for col in required_cols):
            return False, "CSV must contain 'query_id' and 'pred_rank' columns"
            
        try:
            first_rank = eval(df['pred_rank'].iloc[0]) if isinstance(df['pred_rank'].iloc[0], str) else df['pred_rank'].iloc[0]
            if not isinstance(first_rank, list) or len(first_rank) < 20:
                return False, "pred_rank must be a list with at least 20 candidates"
        except:
            return False, "Invalid pred_rank format"
            
        return True, "Valid CSV file"
    except Exception as e:
        return False, f"Error processing CSV: {str(e)}"

def sanitize_name(name):
    """Sanitize name for file system use"""
    return re.sub(r'[^a-zA-Z0-9]', '_', name)

def save_submission(submission_data, csv_file):
    """
    Save submission data and CSV file using model_name_team_name format
    
    Args:
        submission_data (dict): Metadata and results for the submission
        csv_file: The uploaded CSV file object
    """
    # Create folder name from model name and team name
    model_name_clean = sanitize_name(submission_data['method_name'])
    team_name_clean = sanitize_name(submission_data['team_name'])
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    
    # Create folder name: model_name_team_name
    folder_name = f"{model_name_clean}_{team_name_clean}"
    submission_id = f"{folder_name}_{timestamp}"
    
    # Create submission directory structure
    base_dir = "submissions"
    submission_dir = os.path.join(base_dir, folder_name)
    os.makedirs(submission_dir, exist_ok=True)
    
    # Save CSV file with timestamp to allow multiple submissions
    csv_filename = f"predictions_{timestamp}.csv"
    csv_path = os.path.join(submission_dir, csv_filename)
    if hasattr(csv_file, 'name'):
        with open(csv_file.name, 'rb') as source, open(csv_path, 'wb') as target:
            target.write(source.read())
    
    # Add file paths to submission data
    submission_data.update({
        "csv_path": csv_path,
        "submission_id": submission_id,
        "folder_name": folder_name
    })
    
    # Save metadata as JSON with timestamp
    metadata_path = os.path.join(submission_dir, f"metadata_{timestamp}.json")
    with open(metadata_path, 'w') as f:
        json.dump(submission_data, f, indent=4)
    
    # Update latest.json to track most recent submission
    latest_path = os.path.join(submission_dir, "latest.json")
    with open(latest_path, 'w') as f:
        json.dump({
            "latest_submission": timestamp,
            "status": "pending_review",
            "method_name": submission_data['method_name']
        }, f, indent=4)
    
    return submission_id

def update_leaderboard_data(submission_data):
    """
    Update leaderboard data with new submission results
    Only uses model name in the displayed table
    """
    global df_synthesized_full, df_synthesized_10, df_human_generated
    
    # Determine which DataFrame to update based on split
    split_to_df = {
        'test': df_synthesized_full,
        'test-0.1': df_synthesized_10,
        'human_generated_eval': df_human_generated
    }
    
    df_to_update = split_to_df[submission_data['split']]
    
    # Prepare new row data
    new_row = {
        'Method': submission_data['method_name'],  # Only use method name in table
        f'STARK-{submission_data["dataset"].upper()}_Hit@1': submission_data['results']['hit@1'],
        f'STARK-{submission_data["dataset"].upper()}_Hit@5': submission_data['results']['hit@5'],
        f'STARK-{submission_data["dataset"].upper()}_R@20': submission_data['results']['recall@20'],
        f'STARK-{submission_data["dataset"].upper()}_MRR': submission_data['results']['mrr']
    }
    
    # Check if method already exists
    method_mask = df_to_update['Method'] == submission_data['method_name']
    if method_mask.any():
        # Update existing row
        for col in new_row:
            df_to_update.loc[method_mask, col] = new_row[col]
    else:
        # Add new row
        df_to_update.loc[len(df_to_update)] = new_row

def process_submission(
    method_name, team_name, dataset, split, contact_email,
    code_repo, csv_file, model_description, hardware, paper_link
):
    """Process and validate submission"""
    try:
        # [Previous validation code remains the same]
        
        # Process CSV file through evaluation pipeline
        results = compute_metrics(
            csv_file.name,
            dataset=dataset.lower(),
            split=split,
            num_workers=4
        )
        
        if isinstance(results, str) and results.startswith("Error"):
            return f"Evaluation error: {results}"
        
        # Prepare submission data
        submission_data = {
            "method_name": method_name,
            "team_name": team_name,
            "dataset": dataset,
            "split": split,
            "contact_email": contact_email,
            "code_repo": code_repo,
            "model_description": model_description,
            "hardware": hardware,
            "paper_link": paper_link,
            "results": results,
            "status": "pending_review",
            "submission_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        }
        
        # Save submission and get ID
        submission_id = save_submission(submission_data, csv_file)
        
        # Update leaderboard data if submission is valid
        update_leaderboard_data(submission_data)
        
        return f"""
        Submission successful! Your submission ID is: {submission_id}
        
        Evaluation Results:
        Hit@1: {results['hit@1']:.2f}
        Hit@5: {results['hit@5']:.2f}
        Recall@20: {results['recall@20']:.2f}
        MRR: {results['mrr']:.2f}
        
        Your submission has been saved and is pending review.
        Once approved, your results will appear in the leaderboard under the method name: {method_name}
        """
        
    except Exception as e:
        return f"Error processing submission: {str(e)}"

def filter_by_model_type(df, selected_types):
    if not selected_types:
        return df.head(0)
    selected_models = [model for type in selected_types for model in model_types[type]]
    return df[df['Method'].isin(selected_models)]

def format_dataframe(df, dataset):
    columns = ['Method'] + [col for col in df.columns if dataset in col]
    filtered_df = df[columns].copy()
    filtered_df.columns = [col.split('_')[-1] if '_' in col else col for col in filtered_df.columns]
    filtered_df = filtered_df.sort_values('MRR', ascending=False)
    return filtered_df

def update_tables(selected_types):
    filtered_df_full = filter_by_model_type(df_synthesized_full, selected_types)
    filtered_df_10 = filter_by_model_type(df_synthesized_10, selected_types)
    filtered_df_human = filter_by_model_type(df_human_generated, selected_types)
    
    outputs = []
    for df in [filtered_df_full, filtered_df_10, filtered_df_human]:
        for dataset in ['AMAZON', 'MAG', 'PRIME']:
            outputs.append(format_dataframe(df, f"STARK-{dataset}"))
    
    return outputs


css = """
table > thead {
    white-space: normal
}

table {
    --cell-width-1: 250px
}

table > tbody > tr > td:nth-child(2) > div {
    overflow-x: auto
}

.tab-nav {
    border-bottom: 1px solid rgba(255, 255, 255, 0.1);
    margin-bottom: 1rem;
}
"""

# Main application
with gr.Blocks(css=css) as demo:
    gr.Markdown("# Semi-structured Retrieval Benchmark (STaRK) Leaderboard")
    gr.Markdown("Refer to the [STaRK paper](https://arxiv.org/pdf/2404.13207) for details on metrics, tasks and models.")
    
    # Model type filter
    model_type_filter = gr.CheckboxGroup(
        choices=list(model_types.keys()),
        value=list(model_types.keys()),
        label="Model types",
        interactive=True
    )
    
    # Initialize dataframes list
    all_dfs = []
    
    # Create nested tabs structure
    with gr.Tabs() as outer_tabs:
        with gr.TabItem("Synthesized (full)"):
            with gr.Tabs() as inner_tabs1:
                for dataset in ['AMAZON', 'MAG', 'PRIME']:
                    with gr.TabItem(dataset):
                        all_dfs.append(gr.DataFrame(interactive=False))
                        
        with gr.TabItem("Synthesized (10%)"):
            with gr.Tabs() as inner_tabs2:
                for dataset in ['AMAZON', 'MAG', 'PRIME']:
                    with gr.TabItem(dataset):
                        all_dfs.append(gr.DataFrame(interactive=False))
                        
        with gr.TabItem("Human-Generated"):
            with gr.Tabs() as inner_tabs3:
                for dataset in ['AMAZON', 'MAG', 'PRIME']:
                    with gr.TabItem(dataset):
                        all_dfs.append(gr.DataFrame(interactive=False))
    
    # Submission section
    gr.Markdown("---")
    gr.Markdown("## Submit Your Results")
    gr.Markdown("""
    Submit your results to be included in the leaderboard. Please ensure your submission meets all requirements.
    For questions, contact stark-qa@cs.stanford.edu
    """)
    
    with gr.Row():
        with gr.Column():
            method_name = gr.Textbox(
                label="Method Name (max 25 chars)*",
                placeholder="e.g., MyRetrievalModel-v1"
            )
            team_name = gr.Textbox(
                label="Team Name (max 25 chars)*",
                placeholder="e.g., Stanford NLP"
            )
            dataset = gr.Dropdown(
                choices=["amazon", "mag", "prime"],
                label="Dataset*",
                value="amazon"
            )
            split = gr.Dropdown(
                choices=["test", "test-0.1", "human_generated_eval"],
                label="Split*",
                value="test"
            )
            contact_email = gr.Textbox(
                label="Contact Email(s)*",
                placeholder="email@example.com; another@example.com"
            )
        
        with gr.Column():
            code_repo = gr.Textbox(
                label="Code Repository*",
                placeholder="https://github.com/username/repository"
            )
            csv_file = gr.File(
                label="Prediction CSV*",
                file_types=[".csv"]
            )
            model_description = gr.Textbox(
                label="Model Description*",
                lines=3,
                placeholder="Briefly describe how your retriever model works..."
            )
            hardware = gr.Textbox(
                label="Hardware Specifications*",
                placeholder="e.g., 4x NVIDIA A100 80GB"
            )
            paper_link = gr.Textbox(
                label="Paper Link (Optional)",
                placeholder="https://arxiv.org/abs/..."
            )
    
    submit_btn = gr.Button("Submit", variant="primary")
    result = gr.Textbox(label="Submission Status", interactive=False)
    
    # Set up event handlers
    model_type_filter.change(
        update_tables,
        inputs=[model_type_filter],
        outputs=all_dfs
    )
    
    submit_btn.click(
        process_submission,
        inputs=[
            method_name, team_name, dataset, split, contact_email,
            code_repo, csv_file, model_description, hardware, paper_link
        ],
        outputs=result
    )
    
    # Initial table update
    demo.load(
        update_tables,
        inputs=[model_type_filter],
        outputs=all_dfs
    )

# Launch the application
demo.launch()