Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from openai import OpenAI
|
4 |
+
import re
|
5 |
+
|
6 |
+
def extract_medicine_names(api_key, image_path, model_choice):
|
7 |
+
"""
|
8 |
+
Extract medicine names from a prescription image using OpenRouter API
|
9 |
+
"""
|
10 |
+
if not api_key or api_key.strip() == "":
|
11 |
+
return "Please provide a valid OpenRouter API key."
|
12 |
+
|
13 |
+
if not image_path:
|
14 |
+
return "Please upload an image."
|
15 |
+
|
16 |
+
try:
|
17 |
+
# Initialize the OpenAI client with OpenRouter base URL
|
18 |
+
client = OpenAI(
|
19 |
+
base_url="https://openrouter.ai/api/v1",
|
20 |
+
api_key=api_key,
|
21 |
+
)
|
22 |
+
|
23 |
+
# Select the model based on user's choice
|
24 |
+
if model_choice == "Llama 4 Maverick":
|
25 |
+
model = "meta-llama/llama-4-maverick:free"
|
26 |
+
else: # Default to Kimi VL
|
27 |
+
model = "moonshotai/kimi-vl-a3b-thinking:free"
|
28 |
+
|
29 |
+
# Prepare image for API
|
30 |
+
with open(image_path, "rb") as image_file:
|
31 |
+
import base64
|
32 |
+
image_data = base64.b64encode(image_file.read()).decode("utf-8")
|
33 |
+
|
34 |
+
# Create the completion
|
35 |
+
completion = client.chat.completions.create(
|
36 |
+
extra_headers={
|
37 |
+
"HTTP-Referer": "https://medicine-extractor-app.com",
|
38 |
+
"X-Title": "Medicine Name Extractor",
|
39 |
+
},
|
40 |
+
model=model,
|
41 |
+
messages=[
|
42 |
+
{
|
43 |
+
"role": "system",
|
44 |
+
"content": "You are a specialized medical assistant. Your task is to analyze prescription images and extract ONLY the names of medicines/medications. Return them as a clear, numbered list without any other commentary. If you cannot identify any medicine names, state that clearly."
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"role": "user",
|
48 |
+
"content": [
|
49 |
+
{
|
50 |
+
"type": "text",
|
51 |
+
"text": "Please extract and list ONLY the names of medicines or medications from this prescription image."
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"type": "image_url",
|
55 |
+
"image_url": {
|
56 |
+
"url": f"data:image/jpeg;base64,{image_data}"
|
57 |
+
}
|
58 |
+
}
|
59 |
+
]
|
60 |
+
}
|
61 |
+
]
|
62 |
+
)
|
63 |
+
|
64 |
+
# Get the response
|
65 |
+
result = completion.choices[0].message.content
|
66 |
+
|
67 |
+
# Process to ensure we're only returning medicine names
|
68 |
+
# This is a basic processing step - the system prompt should already help focus the response
|
69 |
+
if "no medicine" in result.lower() or "cannot identify" in result.lower():
|
70 |
+
return "No medicine names were identified in the prescription image."
|
71 |
+
|
72 |
+
return result
|
73 |
+
|
74 |
+
except Exception as e:
|
75 |
+
return f"Error: {str(e)}"
|
76 |
+
|
77 |
+
# Define the Gradio interface
|
78 |
+
with gr.Blocks(title="Medicine Name Extractor", theme=gr.themes.Soft()) as app:
|
79 |
+
gr.Markdown("# Medicine Name Extractor")
|
80 |
+
gr.Markdown("Upload a prescription image and the app will extract medication names using AI vision models.")
|
81 |
+
|
82 |
+
with gr.Row():
|
83 |
+
with gr.Column():
|
84 |
+
api_key = gr.Textbox(
|
85 |
+
label="OpenRouter API Key",
|
86 |
+
placeholder="Enter your OpenRouter API key here",
|
87 |
+
type="password"
|
88 |
+
)
|
89 |
+
|
90 |
+
model_choice = gr.Radio(
|
91 |
+
["Llama 4 Maverick", "Kimi VL"],
|
92 |
+
label="Select AI Model",
|
93 |
+
value="Kimi VL"
|
94 |
+
)
|
95 |
+
|
96 |
+
image_input = gr.Image(
|
97 |
+
label="Upload Prescription Image",
|
98 |
+
type="filepath"
|
99 |
+
)
|
100 |
+
|
101 |
+
submit_btn = gr.Button("Extract Medicine Names", variant="primary")
|
102 |
+
|
103 |
+
with gr.Column():
|
104 |
+
output = gr.Textbox(
|
105 |
+
label="Extracted Medicine Names",
|
106 |
+
lines=10
|
107 |
+
)
|
108 |
+
|
109 |
+
# Handle the submission
|
110 |
+
submit_btn.click(
|
111 |
+
fn=extract_medicine_names,
|
112 |
+
inputs=[api_key, image_input, model_choice],
|
113 |
+
outputs=output
|
114 |
+
)
|
115 |
+
|
116 |
+
gr.Markdown("""
|
117 |
+
## How to use
|
118 |
+
1. Enter your OpenRouter API key
|
119 |
+
2. Select an AI vision model
|
120 |
+
3. Upload a clear image of a medical prescription
|
121 |
+
4. Click "Extract Medicine Names"
|
122 |
+
|
123 |
+
## Privacy Note
|
124 |
+
Your prescription images are processed securely. No data is stored on our servers.
|
125 |
+
""")
|
126 |
+
|
127 |
+
# Launch the app
|
128 |
+
if __name__ == "__main__":
|
129 |
+
app.launch()
|